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The accuracy and cost of three finite element methods for solving the linearized. two- 

dimensional shallow water equations are compared with a traditional explicit finite difference 
technique. Accuracy is determined by comparing numerical and analytic plane wave 
solutions. Cost is measured as the number of computations per unit of real time and per unit 
of model area. Two of the finite element methods are shown to be cost competitive. and as 
accurate as the chosen explicit finite difference technique. Though not comprehensive, the 
finite element analyses also suggest that meshes compesed of equilateral triangles most 
accurately represent phase and group velocity. ‘62 1984 Academic Press, Inc. 

Within the last decade, finite element methods (FEMs) have become increasingly 
popular for solving the shallow water equations. Since they permit grids of variable 
size, shape, and orientation, they are usually able to provide a better approximation 
of the spatial domain than finite difference methods (FDMs). Specifically, better 
coastline fits are possible at model boundaries and grid size can be reduced in regions 
where the solution is expected to require greater resolution. However, most FEMs are 
not cost competitive with explicit FDMs. Their initialization costs and bookkeeping 
are more extensive, and more computations are usually required at each time step. 
For many applications this extra cost outweighs the advantages. 

Some FEMs are able to significantly reduce their computations by “Lumping” the 
matrix involved in the equation to be solved at each time step. Generally, lumping 
also reduces accuracy [ 131. However, a recent study [3] of the one-dimensiona! 
“wave equation” FEM developed by Gray and Lynch [4, 11 j demonstrates that with 
an appropriate choice of time stepping method, an accuracy loss need not occur. 

In this discussion, three FEMs for solving the two-dimensional shallow water 
equations are compared with a traditional explicit FDM. The comparison is based on 
accuracy and cost. The analysis extends the one-dimensional techniques developed 
and illustrated in [2, 31. 

Accuracy is measured by comparing numerical and analytic plane wave solutions. 
These calculations require simplifying the governing equations. Specifically, the 
equations are linearized, constant depth and a regular grid are assumed, and the 
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complications of boundary conditions and initial conditions are ignored. 
Nevertheless, the performance of methods in such an idealized setting does give an 
indication of their accuracy in more complicated problems. 

Cost is measured as the number of computations per unit of real time and per unit 
of model area. It ignores the model initialization. Using these measures, two of the 
FEMs are found to be cost competitive, and as accurate as the chosen explicit FDM. 

This paper is divided into seven sections. Section 1 specifies the shallow water 
equations and their plane wave solutions, and defines concepts required in the subse- 
quent analysis. Sections 2 through 5 examine the accuracy of specific methods with a 
Fourier or dispersion analysis which includes group velocity. Characteristic equations 
or dispersion relationships are calculated for all the numerical methods. From them, 
phase velocities, group velocities, and wave amplitude decay factors are then 
calculated and compared to the analytic values. Several diagrams facilitate the com- 
parison. 

Section 2 investigates the Richardson-Sielecki, [6, l] FDM. It is a popular and 
successful explicit technique whose dispersion relationship has been previously 
calculated [ 12, 71. 

Section 3 studies the Galerkin FE.M with piecewise linear basis functions and 
Crank-Nicolson time stepping. The analysis is restricted to two combinations of six 
triangular elements. Since accuracy is dependent on the shape and configuration of 
the elements, this examination is meant to be illustrative rather than comprehensive. 
Nevertheless, one of the configurations is found to be more accurate and may well be 
optimal. 

Section 4 studies Thacker’s “irregular grid finite-difference” technique [20, 221. For 
the chosen element configurations, it is simply a “lumped mass-matrix” version of the 
FEM in Section 3. 

Section 5 studies the “wave equation” FEM and its lumped version. It extends the 
results of [3]. Section 6 assesses the cost and accuracy of the Richardson-Sielecki, 
Thacker, and lumped %ave equation” methods. Finally, Section 7 summarizes and 
briefly discusses the results. 

1. MATHEMATIC BACKGROUND 

The two-dimensional, linearized shallow water equations are 

(la) 

(lb) 

(lc) 

a(hu) 
$+7+- 

a(ho) = o 
&J 
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where 

Z(X, ~1, t) = elevation above mean sea level, 

U(X, y, t) = x component of the velocity, 

U(X, J’, t) = J component of the velocity, 

h(x, JJ) = mean sea depth, 

g = gravity, 

S(zc, 4’) = Coriolis coefficient, 

z = linear bottom friction coeffkient. 

For the present analysis, the effects of both boundary conditions and initial 
conditions will be ignored. 

Assuming constant values for the depth and Coriolis coefficient, plane wave 
solutions of the form 

($iii) =Re) [i!) explilX,i+,~;l~-r~iril (2) 

can be found for (1). (I) is frequency and 

k = (k,, k,) Qaj 

are the (x, ~7) components of wavenumber. The distance between successive wave 
crests is the wavelength 

L = 274k (3b:r 

where 

k = (k: + k;)? 

For nontrivial solutions, the following cubic 

j3cj 

co3 + 2irco’ - CL+* +f* + ghk’) - irghk’ = 0 (4) 

must be satisfied. Dispersion relationships are obtained from its roots. Two cases are 
possible; either all three roots are purely imaginary, or one is purely imaginary and 
the other two, when multiplied by i, are complex conjugates [ 171. The first case arises 
with relatively large r and results in three stationary wave solutions. The complex 
conjugate roots in the second case are associated with gravity wave solutions that 
travel at the same speed in opposite directions, and have the same rates of amplitude 
decay (or growth). The third root would be associated with a planetary wave if either 
for h were nonconstant [9]. However, when both are constant, as is assumed here, 
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this solution no longer propagates. It simply decays (or grows) in time. In the subse- 
quent analysis, only numerical approximations to the gravity waves will be studied. 

Phase and group velocity are defined [9] as 

C = Re(w) k/k2 (5a) 

(5b) 

Whereas phase velocity describes the speed and direction of individual waves, group 
velocity describes the speed and direction of energy propagation. The importance of 
group velocity in numerical methods is surveyed by Trefethen [23]. Waves whose 
propagation speed C varies with the wavelength are said to be dispersive. If C is 
independent of direction, these waves are also said to be isotropic [IO]. Although 
shallow water waves have virtually the same phase and group velocity, their 
numerical model representations may not. 

2. THE RICHARDSON-SIELECKI FINITE DIFFERENCE SCHEME 

A finite difference scheme which has been used successfully in many tide and 
storm surge problems 16, l] is the Richardson-Sielecki (henceforth RS) scheme. It 
involves calculating variables on a Richardson grid [15] (also known as Arakawa’s 
lattice C grid [ 121) using a particular method of handling the Coriolis terms 
introduced by Sielecki [ 18 J. Assuming a constant depth and Coriolis coefficient, its 
difference equations for solving (1) are 

(6b) 

+ r(ev;s+3’2 + (1 - 8) 0;; l/l) = 0. (6~) 

6 is a frictional weighting parameter and Ax, Ay, and At are the space and time step 
sizes. The elevation and velocity components are seen to be staggered by a half time 
step. The spatial placement of the variables is also staggered, as shown in Fig. 1. The 
scheme is explicit. 
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FIG. 1. Spatially discretized variables for the RS or lattice C grid. 

The dispersion relationship for (6) is found by assuming the plane wave solutions 

z:, = z. exp[i(rk, Ax + Sk2 Ay - nw At)] 

u F: 1’2 = u. exp[i(r - 4) k, Ax + sk, Ay - (IZ + $) Q At)] (1) 

V n+i.‘2 = v,, exp[i(rk, Ax + (s - 4) k, Ay - (a + 4) w At)]. IS 

A nontrivial solution requires 

(A - l){ [A - 1 + r At(BL + (1 - 13))]’ + /l [j-At cos(fk, Ax) cos($k2 Ay) ]’ 1 

+ 4igh At*[.l - 1 + r At(BA + (1 - f?))] ( 
sin2(ik, Ax) + sin’($k, Ay) 

(A.u)2 
i (AY)~ 

sin(k, Ax) sin(k, Aq’)fAt = 0 

where each root or eigenvalue can be expressed as 

/z = exp(--iw At). 

The frequencies w may be complex. 

(,8b! 

For specific values off, h, Ax, Ay, and t, the roots of (8a) are functions of 
wavenumber. For r = 0, these roots and the resultant dispersion relationship can be 
expressed algebraicly [7]. For nonzero r, the result can be found numerically. In 
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particular, with dy = dx, w dt can be expressed in terms of the wavenumber sampling 
coordinates (k, dx, kz dx) and the three parameters 

f, = rAx/(ghp2 (94 

f2 = (gh)“‘At/Ax Pb) 

f3 =fAx/( gh) I”. (9c) 

fi is commonly referred to as the Courant number while f3 is a nondimensional 
inverse of the radius of deformation parameter used in [ 121. f, and fi were parameters 
in [2]. 

Phase and group velocities for the RS scheme are calculated from the roots of (8) 
as 

"(ghP2 = 
Re(cc, At) (k, Ax, k2 Ax) 

f 2 ((k, Ax)’ + (k2 Ax)‘) 

G/(gh)“‘= -Im 
a/t %A ~ ___ 

Z’k, Ax ’ 8kz Ax @fz> [ * 

An exhaustive comparison of the RS and analytic solutions will not be attempted 
here. Two roots of (8a) are associated with gravity waves. They will be studied in 
some detail. The third root will be considered only for its stability and its potential 
contamination of the gravity wave solution. Whereas k, Ax and k? Ax will vary over 
their complete domain (--71, rc], only a small portion of the (f, ,f2, f3, 19) parameter 
space will be examined. Subsequent figures for the RS scheme and the FEMs will be 
shown for df, , f3) = (0.05,O. 10). These are typical values for shallow water models at 
mid-latitudes. f2 and time stepping parameters such as t9 will have order unity (O(1)) 
or less, and will generally be chosen for high accuracy of the gravity wave solutions. 

The RS dispersion surface for Ay = Ax and (f,, f2, f3, 19) = (0.05,0.707 LO. 10,0.5) 
is shown in Fig. 2. From (8a) it is seen that (k, Ax, k, Ax) and -(k, Ax, k, Ax) 
produce the same values. (This will be referred to as symmetry through the origin.) 
Hence only positive k2 Ax need be displayed. The “progressive wave” (positive o) 
surface has been shown. A corresponding retrogressive surface (negative w) exists 
and is simply the mirror image about the (k, Ax, k, Ax) plane of the progressive 
surface. f, = (2) - u2 is the maximum permitted for stability when dy = Ax [7]. It is 
also the most accurate value for wave propagation in the x = fy direction when 
f=r=O. 

The analytic dispersion surface has been included in Fig. 2 for comparison. As 
seen from (4), it is symmetric about both planes k, = 0 and k, = 0, and through the 
origin. Both the analytic and RS surfaces have maximum values of approximately 
(2)“2 at (k, Ax/n, k, Ax/n) = (f 1, 1). It is the nonzero Coriolis parameter that gives 
the analytic surface a slight curvature. 

Mesinger and Arakawa show IO]/” contours for the spatially discretized RS 
scheme (the lattice C grid) with f, = 0.5. It has the same basic characteristics as 
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RNRLYTIC RS 

FIG. 2. Analytic and RS dispersion surfaces (1~1 dx/(n(gh)’ ‘)) for the parameter valuesg’, = 0.05. 
fz = 0.707 1, f3 = 0.10. Q = 0.5 and LIX = 3~ for the RS scheme. Dotted line contours arc in increments of 
0.10. 

Fig. 2. Notice that For small wavenumber and k, r icZa RS surface values closely 

approximate the analytic. 
Figure 3 displays the accuracy of the RS scheme. It plots the two accuracy 

measure functions 

where /1, is the principal progressive numerical eigenvalue, ,I, is the analytic 
progressive eigenvalue, and C,, C, are the corresponding phase velocities. 
Normalized group velocity vectors for both the analytic and RS solutions are also 
shown. 

M, is the relative error in phase velocity magnitude. Since it is calculated as a 
function of k, it also equals the relative error in the frequency w. Negative values 
denote waves travelling too slowly while zero values are optimal. For example, -3.31 
denotes a numerical wave speed which is 1 ‘%I too slow. The amplitude measure, M,&, 
is a ratio denoting the growth (or decay) factor per time step relative to the analytic 
solution. Values greater than the optimum of 1. signify a solution which decays too 
slowly oe grows too rapidly. After iz time steps, the ratio of the numerical amplitude 
to the analytic is (MA)“. 

Wave amplitudes are seen to be accurately represented by the RS scheme. 
Wowever, waves travelling to the north-east will be slightly too large while those to 
the north-west will be slightly too small. This effect is solely due to the asymmetric 
treatment of the Coriolis terms in (6). Specifically, when f3 = 0, both M, and M, 
become symmetric about k, = 0. Henry [7] discusses alternative treatments of the 
Coriolis term which improve accuracy. 
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Comparing (lOa) with (5a) it is evident that all phase velocity directions are 
correct. (This may not be true when Ax # Ay.) There is, however, some error in \ 
Since the M, contours are not concentric circles about (k-, Ax, k, Ax) = (0, Oj, the 
numerical waves are anisotropic. They remain so when f, = 0. 

The RS group velocity vectors are simply gradients of the dispersion surfaces. 
They display errors in both magnitude and direction. Analytic and RS values have 
not been shown for the case (k, 4x, k2 Ax) = (0, Oj, which represents infinite sampling 
per wavelength. Consistency of the numerical solution, however, indicates that for 
this limit, the RS values approach the analytic. Except for one-dimensional motion 
(i.e., k, 4x = 0 or k2 4x = 0) directions err toward the diagonal. This suggests that 
wave energy, which travels at the group velocity, tends to favour this direction. The 
one-dimensional 2 Ax waves denoted by (k, Ax, k2 Ax) = (71, 0), (--TC, 0), (0, n) are 
seen to have zero group velocity. This is to be expected since they correspond to 
saddle points in the dispersion surface. Zero group velocity has also been calculated 
for the diagonal waves of length (2)‘.‘* Ax which are associated with (k, Ax, kz Ax) = 
(rc, nj or (-71, n). When I = 0, calculations based on the dispersion relationship in 17 ] 
show this to occur when fi ( (2)-i”‘. 

3. THE GALERKIN FEM WITH PIECEWISE LINEAR BASIS FUNCTIONS 

Within the last decade, FEMs have become popular for solving the shallow water 
equations. Many such methods are available since typically each combines a spatial 
discretization with a time stepping or spectral method. Initially, a widely used spatial 
discretization combined the Galerkin method with piecewise linear basis functions, 
However, its popularity faded as several authors (e.g., [26, 51) encountered 
difficulties with 2 Ax waves. iUany authors (e.g., [24]) have studied the source of this 
probiem. 

This section examines the accuracy of the Galerkin FEM with piecewise linear 
basis functions (GLFEM) for two simple triangular elements. As might be expected, 
the particular shape and configuration of the triangles affect the accuracy of a FEM 
implementation. Platzman [ 161 examines two triangular meshes in his study of FEM 
tidal models, while Mullen and Belytschko [ 131 study the effects of four meshes on 
spatial discretizations of the wave equation. Both investigations assume linear basis 
functions. 

The two configurations studied here are meant to be illustrative rather than 
comprehensive. They are shown in Fig. 4. Both contain six equal triangles with the 
three variables t, U, and u defined at each vertex or node. The first mesh involves 
right triangles. A mirror image of the particular case 4x = Ay is examined in [ 13 j. 

The second mesh contains isosceles triangles and is considered in [16]. The special 
case of equilateral triangles is studied in [ 131. Because of its symmetry, one would 
intuitive!y expect equilateral triangles to be more accurate. Indeed, Mullen and 
Belytschko conclude that for their problem? this arrangement almost removes the 
directional dependence of phase velocity. Numerical experiments [8] have also 
demonstrated that equilateral triangles are more accurate than right triangles. 
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N3 N2 N3 N2 

N4 N N, b NO 

N6 I N5 N6 

-AX--, -ax- 

ELEMENT I ELEMENT 2 

FIG. 4. Triangular element configurations for the FEM analyses. 

Imposing the Galerkin condition with the basis function corresponding to node N,, 
in element 1, the spatially discretized versions of (1) become 

a 1 
z 

I 
p + -yj- (z, + z2 + z3 + z4 + z5 + Z6) 1 
+h,+;.-,:)++(.-i’)++(5?$), 
++(!L3)++3)+~(%&0 

F 
i I[ ;+r + u, + & (u1 + U? + u3 + UJ + u, + u,) 1 

++(~)+$L$g+~(~)] 
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The algebra required to derive these ordinary differential equations (ODEs) is 
facilitated by the “triangular area coordinates” described by Pinder and Gray 1141. 

The analogous result for element 2 is 

(i3a) 

+f 
[ 
+ UIJ + + (u, + u, + 113 + 114 + uj + u,) (Lk) 

Assuming the plane wave solutions 

dispersion relationships due solely to these spatial discretizations can be found. Botkr 
are calculated from the cubic polynomials which result when requiring nonzero 
values for zO, uO. and L’~. For element 1, the cubic is 

- irgh 
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where 

A = ; + ; [cos k, Ax + cos k, AJ’ + cos(k, Ax + k, Ay)] (164 

G, = 3 sin k, Ax - f sin k, Ay + $ sin(k, Ax + k, Ay) (16b) 

G, = 5 sin kz AJJ - j sin k, Ax + 4 sin(k, Ax + k, Aqf). (16~) 

Walters and Carey [24] obtain this result for the particular case f = z = 0 and 
Ax = Ay. With f = r = 0 and either k, or kz equal to zero, the nontrivial dispersion 
relationships arising from (15) and (16) are the same as those for the one- 
dimensional analysis in [2]. 

For element 2, the cubic polynomial is unchanged but 

,4 = + + 6 cos k, Ax + ) cos(+k, Ax) cos k, Ay 

G, = f[sin k, Ax + sin(fk, Ax) cos k, AJJ] 

G, = sin k, Ay cos(fk, Ax). (17c) 

Again, with f = r = 0 and k, = 0, the nontrivial dispersion relationships simplify to 
the one-dimensional result. With equilateral triangles, this simplification also occurs 
when k, = (3)‘12 k,. 

Phase velocities, group velocities, and wave amplitude decay factors can be 
calculated from the roots of (15). However, their accuracy does not always indicate 
the accuracy of the fully discretized numerical solution. In some cases, a subsequent 
time discretization may partially cancel the errors arising from the spatial 
discretization, thereby making the fully discretized equations more accurate. It is 
therefore advisable to continue the analysis by introducing a particular time stepping 
method for solving the system of ODES given by (12) or (13). 

The one-dimensional analysis of [2] suggests that Crank-Nicolson (CN) is the 
best time stepping method to use in combination with the GLFEM. It approximates 
the simple ODE 

g=f(Y) 

with the two-step difference equation 

y 
fl+1 

-4'" 1 

At = y- (y+l +f”). 

(18) 

(19) 

Dispersion relationships are calculated for the fully discretized equations by 
assuming the plane wave solutions 

z(r Ax, s Ay, n At) 
u(r Ax, s Ay, n At) 
v(r Ax, s Ay, II At) 

exp[i(rk, Ax + skz Ay - no At)]. (20) 
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In particular, the numerical eigenvalues defined by (8b) are calculated as 

1= (1 - ++4t)/(1 + +O,dt) (21) 

where wO is a root of (15). This is seen by comparing the dispersion relationships for 
(18) and (19). 

In order to compare the relative accuracy of elements 1 and 2 in Fig. 4, the total 
area of the elements should be considered. Since both elements have the same storage 
requirements for the nodal variables, equal area implies equal storage costs for a 
model of prespecified spatial dimensions. Accuracy can then be compared on an 
equal-cost basis. In particular, consider dx = dy in element 1, and equilateral 
triangles with sides of length d in element 2. Equal area then requires 

d = (-y” Ax. !228 

In order that the accuracy of these two FEMs might also be compared to the RS 
results, the parameters of (9) should be redefined for triangular elements. Specifically 

f2 = ($) Ii2 At 

fx=f(+J 

112 
I 

(23aj 

(23b) 

(23c) 

where A, is the area of each triangle in the respective element. With Ax = AJ in 
element 1, (23) and (9) become equal. Moreover, per unit area. RS has as many 
variables as the FEMs. 

With equilateral triangles, it is convenient to redefine G, in (17). Setting 

G, = [2 sin k, Ay cos(ik, Ax)]/3 Ii’ (24) 

with Ax = d and Ag = (3)“’ d/2 permits the replacement of G,,/Ay with G,/d in (15). 
Figure 5 shows dispersion surfaces for the same parameter values as in Fig. 2. It 

also has the same scale and is viewed from the same perspective. Surfaces are shown 
for both elements of Fig. 4 and both the spatially discretized and fully discretized 
equations. Again, only positive k, Ax need be displayed since (15) is symmetric 
through the origin for element 1, and both through the origin and about the k,d axis 
for element 2. 

Figure 5 has several notable points. The first is that there is little difference 
between the spatially discretized and fully discretized surfaces. This implies that 
virtually all the inaccuracy of the fully discretized equations is due to the spatial 
discretization. Hence CN has scarcely affected the accuracy. This may not be true for 
all time stepping schemes. 
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ELEMENT 1: ELEflENT 2: 
RIGHT TRIRNGLES. OX=DY EOUILATERRL TRIRNGLES 

FIG. 5. Dispersion surfaces (~o~dx/(~~(ghj”‘)) for the GLFEM with CN time stepping. Parameter 
values are f, = 0.05, f2 = 0.7071,f, = 0.10. Dotted line contours are in increments of 0.10. 

Each of the dispersion surfaces in Fig. 5 is symmetric. Considering the symmetries 
in the elements themselves, these are to be expected. The surface for element 1 is 
symmetric about the planes k, = k, and k, = -k,. The element 2 surface is 
symmetric about k2 = (tan 4) k,, where 4 = 30”, 60”, 90”, 120°, or 150”. 

The most striking feature of both surfaces is their poor accuracy for higher values 
of wavenumber sampling. Accuracy is reasonable for small wavenumbers (i.e., 
k Ax/n < 0.1) but it deteriorates as k Ax increases. This is consistent with the one- 
dimensional analysis [2]. Particularly disturbing are the frequency valleys. For the 
case r = 0, the nontrivial roots of (15) are 

w=* [f2+g($$+&)]1’2. 

Assuming Ax = Ay, minimal values of Iwj occur when 

G:=G;=O. (26) 

In particular, for element 1 they occur at the following seven values of (k, Ax/n, 
k,Ax/x): (O,O), (1, l), (-1, l), (0, l), (1, 0), (-l,O), (3, f). The latter corresponds to 
a diagonal wave of length (4.5)“‘Ax, while the fourth, fifth, and sixth minimal values 
are associated with one-dimensional 2 Ax waves. The second and third minima 
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correspond to diagonal waves of length (2)‘12 dx. (In a two-dimensional grid, plane 
waves shorter than 2 dx are possible.) All these waves have the inertial frequency J 
In the particular case when f = 0, cc) = (C ] = 0 at these seven points. Hence the 
progressive and retrogressive surfaces touch. These seven minimal values for / o ] are 
perturbed slightly by the nonzero values of r in Fig. 5. 

For element 2, the surface minima occur at the (kid/~, k,d/n) values (0, 0), 
(1, (3)-‘!2), and (-1, (3)-l”). The latter two correspond to waves of length (3)“’ d. 
A similar minimum also exists at (0, 2(3)-I”) but is not shown. 

Comparing accuracy on the basis of equal area now means that k, dx # k, d. That 
is, even though waves may have the same lengths on the element 1 and element 2 
meshes, their sampling rates per wavelength will differ. The shortest one-dimensional 
wave supported by element 1 is 2 dx while for element 2 it is the slightly longer value 
of 2d. In order to permit accuracy comparisons on the basis of wavelength, the k,d 
and k,d axes should be scaled. This is done in Fig. 6. 

Figure 6 shows M,, M,, and G/(g/z)“’ values associated with the fully discretized 
dispersion surfaces of Fig. 5. Both element configurations produce wave amplitudes 
which are too large and phase velocities which are too small. However? for both M, 
and M,, when k, Ax/n < 0.5 the element 2 contour levels are further away from 
(kl, kz) = (0,O) than those of element 1. This implies that element 2 is more accurate 
for longer waves. 

Comparing Fig. 6 with Fig. 3, one cannot conclude that either numerical scheme is 
consistently more accurate. Generally the RS scheme is more accurate, however, 
there are some regions near (k, Ax, k, ds) = (O? 0) where the GLFEM schemes are 
better for both wave amplitude and phase velocity. 

The accuracy of the GLFEM numerical group velocity deteriorates significantly as 
the wavenumber increases. Errors exist in both magnitude and direction. In fact, for 
some short waves, G is not only much too large but also in virtually the opposite 
direction that it should be. Group and phase velocities which are not co-directional 
signify energy propagating in a different direction than the wave crests. Although this 
should not occur for shallow water waves, it is clearly seen to do so for both the RS 
and GLFEM schemes. 

4. THACKER'S IRREGULAR GRID FINITE DIFFERENCE TECHNIQUE 

Thacker [2&22] has recently presented a technique for defining FDMs over 
irregular grids composed of triangular elements. The underlying concept is that in the 
vicinity of a triangle, the partial derivatives of a function can be approximated by the 
slopes of a plane determined by the values of the function at the vertices. At a vertex, 
the partial derivatives are then approximated by a weighted average of the approx- 
imations in each of the triangles which contain that vertex. For equal area triangles 
such as those of Fig. 4, the resultant spatial derivative approximations are equivalent 
to those for the GLFEM. In fact, for elements 1 and 2, respectively, the spatially 
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discretized equations are simply found by replacing all terms of the form l/22, f 
&(z, f zZ + zj + zq + z5 + z,J in (12) and (13) with z,,. When combined with an 
explicit time stepping scheme, Wang [25] points out that the fully discretized 
technique is a “lumped mass matrix” version of the GLFEM. 

Thacker employs an explicit leapfrog time stepping similar to the RS scheme of 
Section 2. For solving (l), his fully discretized equations may be generalized as 

uJ+l”2 _ u;-1:2 
/\ 

At 
-f[&!;+ 17 + (1 -e> 2:;-y 

+ s[&;+‘~’ +(l-@UJ-“‘]=O (27b) 

A 
qt Ii? _ uJ-I!2 

At 
+ (1 - 0) *J-'/y 

where 

denote the spatial derivative approximations. For elements 1 and 2, these approx- 
imations are identical to those in (12) and (13). The particular scheme discussed by 
Thacker has r = 0 and 0 = 1. 

Assuming a uniform grid of equilateral triangles and f = 0, Thacker [22] calculates 
dispersion relationships for his scheme. These results can be extended to include the 
element 1 grid with Ax = Ay, and to allow for nonzero friction and Corioiis 
parameters. For both grids, the spatially discretized relationships are simply found b:j 
setting A = I in (15). 

Assuming plane wave solutions, the characteristic equation arising from (27) is 

+gh(At)2~[~(l+BTAt)-l+(l-B)iAt]j$$+~) =o (28j 

with A defined as in (8b) and G,, G, as in (16), or (17) and (24). With r = Oj the 
respective dispersion relationships for elements I and 2 are 

COSdt= [1-(fAt)‘8(1--8)-+gh ($)2Gxy /(I + (@At)“) (29a’i 
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and 

cos o At = 1 - (fdt)’ e( 1 - 8) - +gh 
(d) xyl/ 
df ’ G (1 + WAt)*) 

where 

G,,=G;+G$ 

Withf= 0, (29b) simplifies to Thacker’s result. 
For equilateral triangles, Thacker obtains the following necessary stability 

conditions for his scheme and the GLFEM with similar time stepping: 

f; = (gh)“’ At/d < 1.70437 (30a) 

f; < 0.90288. W’b) 

These conditions assume f= 0 and 0 = 1. For element 1 with Ax = dq’, the analogous 
conditions are 

f2 = (g/z)“’ At/Ax < 1.4142 

f2 < 0.79830. 

(3 14 

@lb) 

On the basis of equal area, element 2 has less restrictive stability constraints than 
element 1. Furthermore, for both grids Thacker’s scheme is less restrictive than its 
GLFEM counterpart. This means that Thacker’s scheme can use a larger time step. 
Increased stability with lumping is also noted by Strang and Fix [ 191. 

Thacker claims that his scheme is most accurate with the maximum possible time 
step. This can be verified with an asymptotic analysis. Assume z = O,f; is O(l), and 

f3 and kd are small. Comparing terms in the asymptotic expansion of (29b) and the 
corresponding analytic expansion of cos(w At) shows that 

and 

f; = (,)I’* (32) 

e=; 

produce the best match. Accuracy is also seen to increase as f i approaches (3)“’ 
from below. Notice that the optimal value off; is slightly larger than the stability 
limit given in (30a). 

For right triangles with Ax = Ay, a similar analysis is less conclusive. Accuracy of 
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the numerical method is now dependent on wave direction as well as fi. In particular, 
the most accurate value of f2 for wave propagation is 

f,=2 1+ xJ 
( Ii2 gq ) (33) 

where x = k, dx and J’ = k2 Ax. The minimal optimal value is (2)‘12 when s = -J’. As 
seen from (31a) this is also the maximum stable value. 0 = i still provides the most 
accurate representation of the Coriolis terms. 

Figure 7 shows the dispersion surfaces for the spatially and fully discretized 
versions of Thacker’s scheme. It has the same parameter values, scale, and 
perspective as Fig. 2 and Fig. 5. The spatially discretized surfaces are simply lumped 
versions of those in Fig. 5. They have the same characteristic shape but, as seen from 
the dotted line contour levels, have smaller values. Again, the time stepping method 
has little effect on the fully discretized surface values. The symmetries and location of 
the surface minima are the same for Fig. 7 as for Fig. 5. This implies that problems 
with short waves for the GLFEM can also be expected with Thacker’s scheme. 

Figure 8 displays the two accuracy measure functions and group velocity vectors 
corresponding to the surfaces of Fig. 7. As with the GLFEM, the element 2 mesh is 
generally more accurate than the element 1. Figure 9 is similar but has the near 
optimal parameter values 19= $, and fi = 1.40, f2 = 1.826 (fi = 1.70) for the right 
triangle and equilateral triangle cases. respectively. As theory predicts, Fig, 9 does 

E!.Ei?ENT 1 : 
RIGHT TRIRNGLES. DX=DY 

ELEMENT 2: 
EOUILRTERRL TRIRNGLES 

FIG. 7. Dispersion surfaces (Iwi dx/(7c(gh)‘.“)) for Ihacker’s method. Parameter values are 
f, = 0.05, fi = 0.707 1, f, = 0.10, 0 = 1. Dotted line contours are in increments of 0. IO. 
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display more accurate ]C / and G for small wavenumbers. The amplitude ratios are 
also more accurate, though they are too large in Fig. 9 and too small in Fig. 8. Notice 
that for small increasing wavenumbers, Fig. 9 shows an improvement in amplitude 
accuracy. 

A comparison of Fig. 8 and Fig. 6 demonstrates that mass lumping can cause an 
accuracy loss. However, to some extent, the different time stepping methods for the 
two techniques has influenced the accuracy measure values. Replacing the CN time 
stepping used with the GLFEM of Fig. 6 with Thacker’s time stepping actually 
improves, for the same parameter values, the element 2 accuracy. However, Thacker’s 
scheme remains less accurate for both elements. 

A comparison of Fig. 9 with Fig. 6 is also revealing. It illustrates that an optimal 
Thacker scheme can be more accurate than the unlumped FEM to which it is related. 
Considering the much smaller costs of running Thacker’s scheme, this is a significant 
result. However, the most accurate Thacker’s scheme is not more accurate than the 
most accurate GLFEM, since the latter improves as fi decreases. Nevertheless, 
Thacker’s scheme can be made as accurate as the GLFEM by increasing its spatial 
resolution. The associated cost increase is more than offset by the explicit time 
stepping, so that his scheme remains cheaper. 

5. THE “WAVE EQUATION" MODEL FOR FINITE 
ELEMENT TIDAL COMPUTATIONS 

Recently Gray and Lynch [4, 1 l] introduced a promising FEM for solving the 
shallow water equations. Rather than working with the governing equations in 
conservation form, their “wave equation” method (WEM) involves transforming the 
continuity equation to a second-order partial differential equation (PDE). The revised 
system of equations is then solved with a Galerkin FEM, piecewise linear basis 
functions, and centred time stepping. Dispersion analyses of the one-dimensional 
WEM and its lumped counterpart, the LWEM, are given in [3]. This section extends 
those results to the two-dimensional triangular elements of Fig. 4. 

The linearized, two-dimensional, constant depth version of the continuity equation 
solved by Lynch and Gray [ 1 I] is 

(34) 

It is solved in combination with the momentum equations (lb) and (1~). The charac- 
teristic equation for this system of PDEs is simply the product of (4) and (-iw + r). 
Consequently, replacing (la) with (34) produces an additional dispersion relationship 
whose associated solution is a stationary wave that decays in time when r > 0. 

Since Lynch and Gray employ piecewise linear approximating functions, the 
L,aplacian term in (34) necessitates a weak form of the Galerkin condition. Imposing 
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tRis condition with the basis function corresponding to node N, in element 1, the 
spatially discretized version of (34) becomes 

( 

r 

,$+r$ 

I[ 

1 1 
~zo+~(z’+z’+23+z”+z’+~~) 

-gh 
z, - 22, + zq 

(Ax)2 + 
z3 - 22, f zs 

W)* 1 
= 0. 

The analogous result for element 2 is 

-gh I I - z1- 22, + zq 1 

(Ax)’ + (Ay)’ 
$ (z2 -z, - z. i ZJ 

+ f (Zj - z(J - z,+~j)++ -+(z2+z3+z6+Zi!-2Zo 

L II !- ( -O. (36) 
The associated spatially discretized momentum equations are given by (12b), (12~) 
and (13b), (13c), respectively. 

Assuming plane wave solutions of the form (14), dispersion relationships can be 
found for these spatial discretizations. In both cases they are derived from the roots 
of the polynomial 

w4 $3irw3 - w’(3t’ +f2 + 2ghB/A) - izo(r’ if’ + 4ghB/A) 

+gh [2(1’+f’)B/A-f’(&+&)/4’] =o. 

For element 1, A, G,, and G, are defined by (16) while 

B= 
1 - cos k, Ax 

(Ax)’ + 
1 -coskzAy 

(A,\?)’ ’ 

(37) 

(3&a) 
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For element 2, A, G,, and G, are defined by (17) while 

B = 1 - cos k, ds 

(Ax)2 + 

$(3 + cos k, Ax) - cos(;k, Ax) cos k, Ay 

(AY)~ 
W? 

Assuming plane wave solutions of the form (20), dispersion relationships can also 
be calculated for the fully discretized “wave equations.” As in [Ill, we assume that 
the time stepping method is parameterized in terms of 19, the weighting parameter for 
the gravity terms, and CL, the weighting parameter for the friction terms in the 
momentum equations. With G,, G,,, ,4, and B defined appropriately for elements 1 
and 2, the characteristic equation is 

y1 + + t At y2 + 2gh(At)’ yeB/A ] [y; + 4Tdt Y2)ja + 4(Af)‘(r21’: +.f’12)] 

- 4ghlff2y,(At)” 
G’ G2 

(ilx)?+(dl’)?, A’=0 
)i 

(394 

where 1 is defined in (8b) and 

y1 = (A - 1)2 WI 

y2=12- 1 (39c) 

ye+?(A2+ l)+(l-8)1 (394 

ya = fa(d’ + 1) + (1 - a) L. (394 

Two roots of (39) are associated with gravity waves. They are called principal 
roots. The remaining four roots are either artifacts of the numerical solution, called 
spurious roots, or approximations to the two stationary modes. Spurious roots are 
important only insofar as they can contaminate the principal numerical solution. In 
particular when their magnitude is larger than that of the principal roots, they decay 
more slowly (or grow more rapidly) and eventually dominate the solution. Provided 
they do not contaminate the gravity wave solutions, the stationary mode approx- 
imations are also unimportant. However, if either f or h were nonconstant, one 
stationary mode would become a planetary wave whose numerical approximation 
would be of interest. 

A linear stability analysis of the WEM is difficult when f is nonzero. However, 
necessary stability conditions with realistic nonzero values off should only be pertur- 
bations of the conditions derived by assuming f = 0. Therefore, the restrictions 
obtained by assuming f = 0 should be close to those required for nonzero Coriolis. 
Numerical computations confirm this. 

When f = 0, (39) reduces to 

C?,C?:=o (404 
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where 

Q, = yI + $r At yz + 2gh(At)* yeB/A (40b) 

and 

Q2=yz+2tAty,. (40r ) 

This result is similar to the one-dimensional characteristic equation [3] Q1 Q2. 
Specifically, Qz is identical, and Qr has the same form when E’ is defined as 

E’ = 2gh(At)‘B/A. (4ij 

This similarity implies that the one-dimensional stability analysis can be followed 
here. 

The roots of Q2 are parasitic. In one dimension, they are stable when [ 111 

u > +. (42) 

In two dimensions, each of the parasitic roots has multiplicity 2, thereby requiring the 
more restrictive condition a > f. Numerical computations suggest that 01= 1 is a 
good choice since it generally ensures that the spurious root magnitudes are less than 
those of the principal roots. This is discussed further in [3]. 

The propagating principal roots of Q, are stable when 

l++At 
for all E’ and t At. The nonpropagating principal roots are stable when 

(43a) 

(43bj 

for all E*. Assuming positive r At, the second condition is more restrictive. For 
element 1 with Ax = Ay, it reduces to 

while for the equilateral triangles of element 2 it becomes 

With k, = 0, E’ is identical to its one-dimensional counterpart. Hence all the roots 
and the stability constraints reduce to those in [3]. Setting k, = 0 is equivalent to 
projecting both elements of Fig. 4 onto the JJ axis. The six nodes coalesce to three 
nodes which are uniformly separated by Ay. 
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In [3] it was possible to choose a value of B which produces the most accurate 
one-dimensional dispersion relationship for the WEM. This is also possible in two 
dimensions. Assuming f = r = 0, the principal numerical eigenvalues are the roots of 

(/I - I)* + 2gh(At)*[$e(P + 1) + (1 - l!Y?)]B/A = 0. (45) 

With element 1 and dx = Ay, substitution for 1 leads to the dispersion relationship 

cos w At = [ 1 - (1 - QD]/( 1 + BD) Wa) 

where 

D = f;(2 - cos x - cos y)/[$ + +(cos x + cos y + cos(x + y))] (46b) 

and x = k, Ax, J = k, Ax. Comparing the asymptotic expansion of (46a) for small x 
and ~1 with the analytic result does not yield one value of 6’ which is best for all wave 
directions. In particular, when y = sx, 

(47) 

provides the best match. With s = 0 or s = co, (47) reduces to the one-dimensional 
result [3] 

(48) 

This value produces the most accurate representation of wave propagation along 
either axis of element 1 in Fig. 4. However, for waves propagating along the diagonal 
(i.e., s = l), 

is best. Withy, = (2)-i’*, these two optimal values are appreciably different, namely, 
i and 1. 

Accuracy which varies with wave direction is clearly undesirable. It implies that 
grid orientation affects model accuracy and that by simply changing direction a wave 
may be less accurately represented. Fortunately, with the preceding simplifying 
assumptions, this directional dependence can be avoided with equilateral traingles. In 
fact, it is even avoided for small nonzero values of r At. 

With x = k, d, 4’ = k,d and rd = Ay, the dispersion relationship for element 2 is 
again given by (46a), but 

D = (f;)‘[ I - cos x + (l/r-*)(: + 4 cos x - cos($x) cos(ry))] 
[+ + + cos x + 3 cod cos(ry)] (50) 
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Matching asymptotic expansions now shows that 

is the most accurate value for gravity wave propagation in equilateral triangles. 
Unlike (47), it is not directionally dependent. Furthermore, with the substitution dy = 
((3)‘92)d, (5 1) is identical to the one-dimensional result (48). 

Figure 10 shows the principal dispersion surfaces for the spatially and fuill 
discretized versions of the WEM. It has the same parameter values, scale, and 
perspective as Figs. 2, 5, and 7. The time stepping parameters for the fully discretized 
equations are 6 = 0.5 for element 1 and 0 = 0.45534 for element 2. The former is 
optimal for one-dimensional wave propagation along the x or 4’ axis, while the later is 
optimal for all directions. Roth values satisfy the principal eigenvalue stability 
conditions (44). For both elements, choosing CL = 1 ensures stability of the parasitic 
eigenvalues. 

Unlike the GLFEM and Thacker’s scheme, these surfaces do not have local 
minima at large wavenumbers. This implies that short waves do not have the small 

ELEilENT 1: ELEilENT 2: 
RIGHT TRIRNGLES. DX:DY EOUILRTERAL TRiRNGLES 

FIG. 10. Dispersion surfaces (lo~d~/(rr(gh)“~)) for the WEM. Paratneter values are f, = P.05. 
fi = 0.7071. f, = 0.10. u = 1. 0 = 0.5 for element 1 and 6’ = 0.45534 for element 2. Dotted line contours 
are in increments of 0.10. 
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inertial phase velocities (arising from o = f) discussed in Sections 3 and 4. Provided 
the parasitic waves do not contaminate the numerical solution, the WEM (with these 
fr, fi, f3 values) should therefore not have the same short wave problems as the 
GLFEM and Thacker’s method. 

The M, and Mc contours and group velocity vectors corresponding to the 
dispersion surface plots of Fig. 10 are shown in Fig. 11. High phase velocity accuracy 
along the axes of element 1 is evident but seems to occur at the expense of accuracy 
in other directions. For virtually all wavenumbers, element 2 more accurately approx- 
imates wave propagation than element 1. And for small wavenumbers, its wave 
amplitude approximation is also slightly more accurate. 

Lynch and Gray [ 1 l] also discuss an appropriate quadrature rule which has the 
effect of lumping their equations. As with Thacker’s scheme, this lumping causes all 
terms of the form fz, + &(z, + zZ + z3 + zq + z5 + z,J in the spatially discretized 
equations to be replaced by zO. The associated dispersion equation (37) then requires 
the re-definition A = 1. The fully discretized lumped equations, and their associated 
characteristic equation (39), require these same substitutions. When 0= 0, the 
LWEM is explicit. 

Necessary stability restrictions for the LWEM can also be found when f = 0. The 
parasitic eigenvalues are identical to those for the WEM and are thus governed by the 
same stability conditions. Similarly, with A = 1 substituted in (41), the principal 
eigenvalues are stable when (43b) is satisfied. These conditions reduce to 

d>L ‘1-L’ 
‘2 ( ) v-f 

for dx = do and element 1, and 

1 
’ - 1.47218(f;)’ (52b) 

for the equilateral triangles of element 2. 
The LWEM also has values of 0 that are most accurate for wave propagation. 

Assume f = r = 0. With element 1 and dx = dy, the LWEM dispersion relationship is 
again given by (46a), but 

D = f ;(2 - cos x - cos y). (531 

Matching the asymptotic dispersion relationship for small x and -v with the analytic 
and setting JJ = sx now yields 

1 

[ 

1 +sj 
B=y l -f;(l +s2)2 * I 

As with the WEM, s = 0 or s = co produces the one-dimensional result [3] 

1 
e=+ 1-E. 

( ) 
(55) 
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With x = k,d, y = k,d, and rd = do>, the LWEM dispersion relationship for 
element 2 is also given by (46a) but 

(+x) cos(ry)) ]. (56) 

Matching asymptotic expansions for equilateral triangles yields 

(57) 

Again, this value is not directionally dependent. And with the substitution y = 
((3)‘lZ/2)d, it is identical to the one-dimensional result (55). 

In one dimension, 0 = 0 produces the most accurate approximation of gravity wave 
amplitudes for both the WEM and LWEM [3]. The same is true in two dimensions 
when f = 0 and r > 0. In fact, it is true for both element 1 when dx = dy and the 
equilateral triangles of element 2. Furthermore, when f = r = 0, all stable values of 8 
produce exact amplitudes. 

Figure 12 illustrates the stability regions and the most accurate ~9 values for gravity 
wave propagation over a configuration of equilateral triangles. Values off; and 8 
should be chosen so that the resultant numerical method is stable. The particular 
choice may be a compromise between accuracy and time step size. Large values of At 
(orf;) result in less computation cost but may be less accurate. Computationally, the 
explicit LWEM (0 = 0) should be most economical. Unfortunately, the associated f 5 
value which most accurately represents phase and group velocity df; = 0.866025) is 
outside the stability region. f 5 = 0.824175 is the most accurate and stable choice. 

Figure 13 shows the principal dispersion surfaces for the spatially and fully 
discretized versions of the LWEM. It has the same parameter values, scale, and 
perspective as Figs. 2. 5, 7, and 10. The time stepping parameters for the fully 
discretized equations are 0 = 0 for element 1 and B = -0.122 for element 2. The 

WEM 
=: 

LWEM 

E‘IG. 12. Stability and accuracy for the WEM and LWEM over equilateral triangles. Shaded regions 
denote stability. Solid lines designate the most accurate values of 6’ andf; for wave propagation. 
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ELEMENT 1 : ELEhENT 2: 
RIGHT TRIRNGLES. OXzDY EQUILRTERRL TRIRNGLES 

FIG. 13. Dispersion surfaces (1~1 Ax/(n(gh)“‘)) for the LWEM. Parameter values are J, = 0.05, 
J?z = 0.7071.S, = 0.10, 0: = 1. 6’ = 0 for element 1 and B = -0.122 for element 2. Dotted line contours arz 
in increments of 0.10. 

former is optimal for wave propagation along the directions 4’ = kx, and as seen from 
(52a), lies just within the stability limit. (Choosing B = -i7 the optimal value for 
wave propagation along the x or JJ axis would be unstable.) The 0 value for element 2 
is optimal for all wave directions and satisfies the stability constraint (52b). 

Comparing the spatially discretized surfaces in Figs. 10 and 12, it is evident that 
lumping has reduced the w values. However, the chosen time stepping methods are 
seen to lower the WEM values and raise the LWEM values so that the t%hy 
discretized surfaces are more similar. 

Figure 14 shows the M,\ and M, contours and the group velocity vectors 
associated with the dispersion surfaces of Fig. 13. Accurate wave propagation along 
the lines x = +y for element 1 is evident, but appears to be at the expense of 
accuracy in other directions. For small wavenumbers, element 2 displays the same 
accuracy in all directions and is generally more accurate than element 1. Wave 
amplitude accuracy also seems to be independent of direction for element 2. However, 
it is slightly less accurate than the amplitudes associated with element 1. 

The M, values for element 2 are virtually identical in Fig. 11 and Fig. 14, In fact, 
with f, = -,f, = 0, they would be equal. Denoting the optimal parameter values of (5 3: 
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and (57) by 8*, the dispersion relationships for both the WEM and LWEM when 
expanded to terms of order 6 can be expressed as 

1 
p + x2y4 + -j- xy (58, 

This implies that around their respective 0” values, both the WEM and LWEM have 
the same accuracy deterioration for cos w At. As was found in one dimension, the 
best time stepping method for the lumped scheme produces the same propagation 
accuracy (to order 8 in (k,d, k?d)) as the best time stepping method for the 
unlumped method. Notice that the associated M, values indicate amplitudes which 
are too small for the LWEM and too large for the WEM. 

6. COMPARISONS OF ACCURACY AND ECONOMY 

Most finite element methods are more expensive than explicit finite difference 
methods. This is the case with the GLFEM and the RS scheme. This disadvantage is 
primarily due to the nondiagonal matrix equation which must be solved at each time 
step. In Sections 4 and 5, it was seen that with explicit time stepping, both Thacker’s 
scheme and the LWEM produce diagonal matrices. Hence they should be much 
cheaper than the GLFEM. In this section, cost and accuracy comparisons are given 
for the RS scheme over a square grid, and for Thacker’s method and the LWEM over 
a configuration of equilateral triangles. 

Assume identical configurations of equilateral triangles for Thacker’s scheme and 
the LWEM. When f = t = 0, asymptotic expansions of the nondimensional phase 
velocity for small (k,d, k,d) are 

jc l/(gh)‘,” = 1 + [Q&d)* + (&d)*l [+ (fS)* - $ 

IC I/(gh)‘,” 2: 1 + [(k,d)2 + (r&d)*] [$ (f;)’ +] 

(59a) 

for Thacker’s scheme and the explicit LWEM, respectively. The associated respective 
group velocities are 

G/(gh)“’ z [(k: + /I;)-“* + 3d*(k; + k;)3’2 (& (f;)’ - +) ] k (60a) 

G/(gh)“‘” ” ((k; + k:)-“* + 3d*(k; + k;)3’2 (& (f;)” - &I] k. (60b) 
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Notice that for high wave resolution, both phase velocities are isotropic and both 
group velocities have no directional error. 

Assuming the optimal stable values for f I, specifically f 5 = 1.70437 for Thacker 
and f i= 0.824175 for the LWEM, (59) becomes 

/C l/(gh)1’2 1: 1 - 0.00396345 [(k+Q2 + (k2d)2] (614 

(C I/(ghy2 N 1 - O.O0294732[(k,d)? + (k,@]. (6lb) 

Since the corresponding analytic values are 1.0, the second term in each case is the 
phase velocity error. Both errors in the group velocity magnitude are larger by a 
factor of three. 

Equation (61) indicates that for identical configurations of equilateral triangles the 
best explicit LWEM is more accurate than the best Thacker scheme. However, 
Thacker’s scheme is cheaper since it uses a much larger time step. By reducing both d 
and At with Thacker’s scheme, it is possible to attain the LWEM accuracy and retain 
the cost advantage. 

If the same accuracy is assumed for both methods, Thacker’s At becomes larger by 
the factor 1.78329. However, his smaller d requires 1.34476 more nodes per unit 
area, and thus more calculations over one time step. The net result is that Thacker’s 
scheme can have the same wave propagation accuracy for small wavenumbers as the 
LWEM, yet require only 0.75409 the number of calculations per unit area and unit of 
time. 

Despite this cost advantage, Thacker’s method may not be preferable to the 
LWEM. Boundary conditions often introduce short waves into a numerical model. 
Their accumulation can contaminate the desired longer wave solutions. Problems of 
this type have been reported with the GLFEM. Since both Thacker’s scheme and the 
GLFEM do not represent short waves accurately, similar problems may also arise 
with Thacker’s scheme. They should not exist with the LWEM. 

With Ax = Ay and f = t = 0, the RS dispersions relationship is [71 

sin2& At) = f :[sin2(fk, Ax) + sin2($kz Ax)]. (62) 

For small values of (k, dx, k, Ax), the asymptotic expansion for the associated 
nondimensional phase velocity magnitude is 

JC I/(&)” 1: 1 + & [(f: - l)((k, Ax)’ + (k, Ax)2) + (:i”dxx$~(;;2~;;2]. 

(63) 

Since it is anisotropic comparisons with (59) are not straightforward. 
Let us compare the RS scheme with the LWEM. One grid square of the RS has 

three unique variables and area Ax’. One triangular element of the LWEM has area 
((3)“‘/4) d’ and has the equivalent of 1.50 variables, since each node shares its 
variables with five other triangles. For a comparison based on equal density of the 
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variables, set dx = 0.930605d. Assume the optimal f2 value (from (63)) when 
k, = k,, namely, f2 = (2) ‘I2 Then if dt’ is the optimal time step for the LWEM, . 
At = 0.79842At’ is the optimal time step for the RS. The LWEM is therefore more 
economical. Its relative accuracy depends on the wave direction. When k, = k,, he 
RS more accurately approximates wave speed. However, when kl = 0 or kz = 0, the 
LWEM is more accurate. 

7. SUMMARY AND CONCLUSIONS 

The preceding analysis has demonstrated that finite element methods can be cost 
competitive and as accurate as explicit finite difference schemes. In particular, 
Thacker’s scheme and the explicit LWEM were found to be cheaper and generally 
more accurate than the RS finite difference method. 

Of the two configurations of triangular elements, the analysis indicates that 
equilaterial triangles are the better choice. Their phase and group velocities are 
independent of direction and more accurate for long waves. Numerical tests [S ] 
substantiate this result. In fact, because equilateral triangles seem to produce 
isotropic waves when the wave resolution is high, they may be the optimal triangular 
discretization. 

Optimal accuracy for Thacker’s scheme, the WEM, and the LWEM depends en 
the parameter fi. As discussed in [2], it is both possible and reasonable to keep ems 
parameter approximately constant throughout a model. Consequently, an ideai 
triangular discretization should employ equilateral triangles whose side length is 
proportional to (h) I”. 

Specific results from the preceding analysis are now summarized by section. Tae 
RS scheme studied in Section 2 was found to be quite accurate for small 
wavermmbers. and for waves travelling at 45” to the grid axes. However, its phase 
velocity is anisotropic. Asymmetric treatment of the Coriolis terms was also seen to 
affect the accuracy. 

The GLFEM studied in Section 3 displayed accuracy comparable to the RS for 
small wavenumbers but became very inaccurate at larger wavenumbers. The 
numerical dispersion surface was seen to have peaks and valleys: implying waves 
with zero group velocity. Some short waves were calculated to have small inertial 
speeds while others had group velocities whose directions were incorrect by almost 
180”. The configuration of equilateral triangles was found to be more accurate at 
small wavenumbers than the grid of right triangles. 

Thacker’s scheme, studied in Section 4, was found to have the same short wave 
problems as the GLFEM. Stability conditions were calculated for both elements, and 
the f; value which most accurately approximates wave propagation was &so 
calculated. For the equilateral grid, phase velocities were isotropic. 

Section 5 included a linear stability analysis whenf = 0 for both the WEM and the 
LWEM. An asymptotic analysis for small wavenumbers was also used to determine 
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the most accurate time stepping method for each scheme. Accuracy was again seen to 
be directionally dependent with element 1 of Fig. 4, but independent for the 
equilateral triangles of element 2. It was also shown that with an appropriate time 
stepping method, wave propagation accuracy can be preserved in going from the 
WEM to the LWEM. 

Section 6 found that for small wavenumbers, the most accurate version of 
Thacker’s scheme can more cheaply attain the same accuracy as the most accurate 
explicit LWEM. However, Thacker’s scheme is less accurate, and may have 
difficulties, with short waves. The RS scheme was seen to be more expensive per unit 
of real time than the LWEM. Moreover its accuracy is directionally dependent. For 
some directions it more accurately models wave propagation than the LWEM, while 
for other directions it is less accurate. 
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