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The accuracy and cost of three finite element methods for solving the linearized. two-
dimensional shallow water equations are compared with a sraditional explicit finite difference
technigue. Accuracy is determined by comparing numerical and analytic plane wave
solutions. Cost is measured as the number of computations per unit of real time and per unit
of model area. Two of the finite element methods are shown to be cost competitive, and as
accurate as the chosen explicit finite difference technique. Though not comprehensive, the
finite element analyses also suggest that meshes compesed of equilateral triangles most
accurately represent phase and group velocity. € 1984 Academic Press, Inc.

INTRODUCTION

Within the last decade, finite element methods (FEMs) have become increasingly
popular for solving the shallow water equations. Since they permit grids of variable
size, shape, and orientation, they are usually able to provide a better approximation
of the spatial domain than finite difference methods (FDMs). Specifically, better
coastline fits are possible at model boundaries and grid size can be reduced in regions
where the solution is expected to require greater resolution. However, most FEMs are
not cost competitive with explicit FDMs. Their initialization costs and bookkeeping
are more extensive, and more computations are usually required at each time step.
For many applications this extra cost outweighs the advantages.

Some FEMs are able to significantly reduce their computations by “lumping” the
matrix involved in the equation to be solved at each time step. Generally, lumping
also reduces accuracy [13]. However, a recent study [3] of the one-dimensional
“wave equation” FEM developed by Gray and Lynch {4, 11] demonstrates that with
an appropriate choice of time stepping method, an accuracy loss need not occur.

In this discussion, three FEMs for solving the two-dimensional shallow water
equations are compared with a traditional explicit FDM. The comparison is based on
accuracy and cost. The analysis extends the one-dimensional techniques developed
and illustrated in [2, 3].

Accuracy is measured by comparing numerical and analytic plane wave solutions.
These calculations require simplifying the governing equations. Specifically, the
equations are linearized, constant depth and a regular grid are assumed, and the
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complications of boundary conditions and initial conditions are ignored.
Nevertheless, the performance of methods in such an idealized setting does give an
indication of their accuracy in more complicated problems.

Cost is measured as the number of computations per unit of real time and per unit
of model area. It ignores the model initialization. Using these measures, two of the
FEMs are found to be cost competitive, and as accurate as the chosen explicit FDM.

This paper is divided into seven sections. Section | specifies the shallow water
equations and their plane wave solutions, and defines concepts required in the subse-
quent analysis. Sections 2 through 5 examine the accuracy of specific methods with a
Fourier or dispersion analysis which includes group velocity. Characteristic equations
or dispersion relationships are calculated for all the numerical methods. From them,
phase velocities, group velocities, and wave amplitude decay factors are then
calculated and compared to the analytic values. Several diagrams facilitate the com-
parison.

Section 2 investigates the Richardson—Sielecki, [6,1] FDM. It is a popular and
successful explicit technique whose dispersion relationship has been previously
calculated |12, 7].

Section 3 studies the Galerkin FEM with piecewise linear basis functions and
Crank—Nicolson time stepping. The analysis is restricted to two combinations of six
triangular elements. Since accuracy is dependent on the shape and configuration of
the elements, this examination is meant to be illustrative rather than comprehensive.
Nevertheless, one of the configurations is found to be more accurate and may well be
optimal.

Section 4 studies Thacker’s “irregular grid finite-difference” technique [20, 22]. For
the chosen element configurations, it is simply a “lumped mass-matrix” version of the
FEM in Section 3.

Section 5 studies the “wave equation” FEM and its lumped version. It extends the
results of [3]. Section 6 assesses the cost and accuracy of the Richardson—Sielecki,
Thacker, and lumped “‘wave equation” methods. Finally, Section 7 summarizes and
briefly discusses the results.

1. MATHEMATIC BACKGROUND

The two-dimensional, linearized shallow water equations are

oz &(hu) a(lhv) _o (12)
ot ox &y
an—qug?—Z—varw:O (1b)
gt ox
ov

7]
—+g7§+fu+rv=0 (Ic)
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where

z(x, y, t) = elevation above mean sea level,
u(x, y, t) = x component of the velocity,
v(x, y, t) =y component of the velocity,
h{x.y) = mean sea depth,
g = gravity,
JS{x, y) = Coriolis coefficient,

7 = linear bottom friction coefficient.

For the present analysis, the effects of both boundary conditions and initial
conditions will be ignored.

Assuming constant values for the depth and Coriolis coefficient, plane wave
solutions of the form

'z(x, y, 1) g 'z (
ulx,y,t) | =Re { | u, ) explitk;x + &,y — wi)]; (2}
T A T )
can be found for (1). @ is frequency and
k= (k;, k) 32

are the (x,y} components of wavenumber. The distance between successive wave
crests is the wavelength

L =2n/k (30}
where
k= (ki+k})"~ {3¢)
For nontrivial solutions, the following cubic
w* 4 2itw? — w(x? +f* + ghk*) — itghk* =0 (4)

must be satisfied. Dispersion relationships are obtained from its roots. Two cases are
possible; either all three roots are purely imaginary, or one is purely imaginary and
the other two, when multiplied by 7, are complex conjugates [17]. The first case arises
with relatively large t and results in three stationary wave solutions. The complex
conjugate roots in the second case are associated with gravity wave solutions that
travel at the same speed in opposite directions, and have the same rates of amplitude
decay (or growth). The third root would be associated with a planetary wave if either
Jor h were nonconstant {9]. However, when both are constant, as is assumed here,



290 M. G. G. FOREMAN

this solution no longer propagates. It simply decays (or grows) in time. In the subse-
quent analysis, only numerical approximations to the gravity waves will be studied.
Phase and group velocity are defined [9] as

C = Re(w) k/k? (5a)
el (0t |
G_Ref<8kl’8k2)€' (5b)

Whereas phase velocity describes the speed and direction of individual waves, group
velocity describes the speed and direction of energy propagation. The importance of
group velocity in numerical methods is surveyed by Trefethen [23]. Waves whose
propagation speed C varies with the wavelength are said to be dispersive. If C is
independent of direction, these waves are also said to be isotropic [10]. Although
shallow water waves have virtually the same phase and group velocity, their
numerical model representations may not.

2. THE RICHARDSON—SIELECKI FINITE DIFFERENCE SCHEME

A finite difference scheme which has been used successfully in many tide and
storm surge problems [6, 1] is the Richardson—Sielecki (henceforth RS) scheme. It
involves calculating variables on a Richardson grid [15] (also known as Arakawa’s
lattice C grid [12]) using a particular method of handling the Coriolis terms
introduced by Sielecki [18]. Assuming a constant depth and Coriolis coefficient, its
difference equations for solving (1) are

n+1l n n+1/2 __ . n+1/2 n+1/2 _ n+1/2
Zrs A; Zys +h (ur+l,sArurs + v"~S+1AvU’S ) =0 (_6a)
n+3/2 n+1/2 i n+ 1 n+1
Upg — Uy Zrs T Zr_is f n+1/2 n+1/2 n+1/2 n+1/2
At +g Ax ‘—4_(Ur~1,s + Uy +Ur—l.s+1+vr.s+1
1/2
(O 4 (1= B) st 1) =0 (6b)
3/2 n+1/2 n+1 n+1
U:: — Ups Zys T Zyps—1 f n+3/2 nt3/2 n+3/2 n+3/2
Al +g Ay +-4_(urs +ur,s—/l +ur+l.s T U s
+ (@ + (1 — @) i) =0. (6¢)

0 is a frictional weighting parameter and Ax, Ay, and At are the space and time step
sizes. The elevation and velocity components are seen to be staggered by a half time
step. The spatial placement of the variables is also staggered, as shown in Fig. 1. The
scheme is explicit.
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Fic. 1. Spatially discretized variables for the RS or lattice C grid.

The dispersion relationship for (6) is found by assuming the plane wave solutions
2y =zgexpli{rk, Ax + sk, Ay — nw 41))
upt? = ugexpli(r — 4) k, Ax + sk, 4y — (n + 1) w 41)] (7)
vt =vgexpli(rk, dx + (s — 4) ky Ay — (n + 1) w 41)).
A nontrivial solution requires
A= DA =1+ 14104 + (1 — 0))}? + A[f 4t cos(3k, Ax) cos(3k, 4y)]*}

sin’(3k, 4x)  sin®(3k, Ay))
7 + N7
(4x) (4y)

+4Agh AP (% — 1 + T AHBA + (1 — 6))] (

Ar?
Ax Ay

— A —1)gh ( ) sin(k, Ax) sin(k, 4y) f 4t = C (8a)

where each root or eigenvalue can be expressed as
A = exp(—iw At). {(8b)

The frequencies w may be complex.

For specific values of f, h, dx, Ay, and r, the roots of (8a) are functions of
wavenumber. For 7 =0, these roots and the resultant dispersion relationship can be
expressed algebraicly [7]. For nonzero 7, the result can be found numerically. In
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particular, with Ay = Ax, w At can be expressed in terms of the wavenumber sampling
coordinates (k, 4x, k, Ax) and the three parameters

Ji=14x/(gh)"* (92)
fr=(gh)"” Ar/Ax (9b)
Jy=f4x/(gh)". (%)

Jf> is commonly referred to as the Courant number while f; is a nondimensional
inverse of the radius of deformation parameter used in [12]. £, and f, were parameters
in [2].

Phase and group velocities for the RS scheme are calculated from the roots of (8)
as

Re(w At) (k, 4x, k, 4x)

I = = dv) + (k, 4% (10)
R | .
G/(gh)™"" = Im?(ak Ax ok, Ax)/(f)ﬂ (106)

An exhaustive comparison of the RS and analytic solutions will not be attempted
here. Two roots of (8a) are associated with gravity waves. They will be studied in
some detail. The third root will be considered only for its stability and its potential
contamination of the gravity wave solution. Whereas &k, A4x and k, Ax will vary over
their complete domain (—=, 7|, only a small portion of the (f},f.,f;,d) parameter
space will be examined. Subsequent figures for the RS scheme and the FEMs will be
shown for (f,f;) = (0.05, 0.10). These are typical values for shallow water models at
mid-latitudes. £, and time stepping parameters such as & will have order unity (O(1))
or less, and will generally be chosen for high accuracy of the gravity wave solutions.

The RS dispersion surface for Ay =4x and (f},/5,/3. )= (0.05,0.7071, 0.10, 0.5)
is shown in Fig.2. From (8a) it is seen that (k, 4dx, k,dx) and —(k, Ax, k, Ax)
produce the same values. (This will be referred to as symmetry through the origin.)
Hence only positive k, Ax need be displayed. The “progressive wave” (positive w)
surface has been shown. A corresponding retrogressive surface (negative ) exists
and is simply the mirror image about the (k, 4x, k, Ax) plane of the progressive
surface. f, = (2)"? is the maximum permitted for stability when 4y =Ax [7]. It is
also the most accurate value for wave propagation in the x = +y direction when
Sf=r=0.

The analytic dispersion surface has been included in Fig. 2 for comparison. As
seen from (4), it is symmetric about both planes £k, =0 and k, =0, and through the
origin. Both the analytic and RS surfaces have maximum values of approximately
(2)'* at (k, Adx/n, k, Ax/n)= (+1, 1). It is the nonzero Coriolis parameter that gives
the analytic surface a slight curvature.

Mesinger and Arakawa show |w|/f contours for the spatially discretized RS
scheme (the lattice C grid) with f; =0.5. It has the same basic characteristics as
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FiG. 2. Analytic and RS dispersion surfaces (jw|Ax/(n{gh)' *)) for the parameter values f, = 0.G5.
f,=0.7071, f;=0.10. §=0.5 and 4x = Ay for the RS scheme. Dotted line contours are in increments of
0.10.

Fig. 2. Notice that for small wavenumber and k, ~ k,. RS surface values closely
approximate the analytic.

Figure 3 displays the accuracy of the RS scheme. It plots the two accuracy
measure functions

Aa .

MA: Z (113)
‘Cnl‘lcal \

M =—1—2 iib
SeN (e

where A, is the principal progressive numerical eigenvalue, 1, is the analytic
progressive eigenvalue, and C,, C, are the corresponding phase velocities.
Normalized group velocity vectors for both the analytic and RS solutions are alsc
shown.

M. is the relative error in phase velocity magnitude. Since it is calculated as a
function of k, it also equals the relative error in the frequency w. Negative values
denote waves travelling too slowly while zero values are optimal. For example, —0.01
denotes a numerical wave speed which is 1% too slow. The amplitude measure, 3/,
is a ratio denoting the growth (or decay) factor per time step relative to the analytic
solution. Values greater than the optimum of 1. signify a solution which decays too
slowly or grows too rapidly. After n time steps, the ratio of the numerical amplitude
to the analytic is (M )"

Wave amplitudes are seen to be accurately represented by the RS scheme.
However, waves travelling to the north-east will be slightly too large while those to
the north-west will be slightly too small. This effect is solely due to the asymmetric
treatment of the Coriolis terms in (6). Specifically, when f; =0, both M, and M_
become symmetric about k, = 0. Henry [7] discusses alternative treatments of the
Coriolis term which improve accuracy.
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Comparing (10a) with (5a) it is evident that all phase velocity directions are
correct. (This may not be true when Ax 5 4y.) There is, however, some error in |C|.
Since the M contours are not concentric circles about (k; 4x, k, Ax) = (0, 0), the
numerical waves are anisotropic. They remain so when f, = 0.

The RS group velocity vectors are simply gradients of the dispersion surfaces.
They display errors in both magnitude and direction. Analytic and RS values have
not been showa for the case (k, 4x, k, dx) = (0, 0), which represents infinite sampling
per wavelength. Consistency of the numerical solution, however, indicates that for
this limit, the RS values approach the analytic. Except for one-dimensional motion
(ie., k;4x =0 or k,Ax =0) directions err toward the diagonal. This suggests that
wave energy, which travels at the group velocity, tends to favour this direction. The
one-dimensional 2 Ax waves denoted by (k, 4x, k,4x)=(%,0), (—x, 0), (0, 7) are
seen to have zero group velocity. This is to be expected since they correspond to
saddle points in the dispersion surface. Zero group velocity has also been calculated
for the diagonal waves of length (2)"2 Ax which are associated with (k, 4x, k, 4x) =
(m, ) or (—n, 7). When 7 =0, calculations based on the dispersion relationship in {7]
show this to occur when f, < (2)~"2,

3. Tue GALERKIN FEM wiTH PIECEWISE LINEAR BASIS FUNCTIONS

Within the last decade, FEMs have become popular for solving the shallow water
equations. Many such methods are available since typically each combines a spatial
discretization with a time stepping or spectral method. Initially, a widely used spatial
discretization combined the Galerkin method with piecewise linear basis functions.
However, its popularity faded as several authors (e.g., [26,5]) encountered
difficulties with 2 Ax waves. Many authors (e.g., [24]) have studied the source of this
probiem.

This section examines the accuracy of the Galerkin FEM with piecewise linear
basis functions (GLFEM) for two simple triangular elements. As might be expected,
the particular shape and configuration of the triangles affect the accuracy of a FEM
implementation. Platzman [16] examines two triangular meshes in his study of FEM
tidal models, while Mullen and Belytschko [13] study the effects of four meshes on
spatial discretizations of the wave equation. Both investigations assume linear basis
functions.

The two configurations studied here are meant to be iliustrative rather than
comprehensive. They are shown in Fig. 4. Both contain six equal triangles with the
three variables z, u, and v defined at each vertex or node. The first mesh involves
right triangles. A mirror image of the particular case 4x = Ay is examined in [13].

The second mesh contains isosceles triangles and is considered in [16]. The special
case of equilateral triangles is studied in [13]. Because of its symmetry, one would
intuitively expect equilateral triangles to be more accurate. Indeed, Mullen and
Belytschko conclude that for their problem, this arrangement almost removes the
directional dependence of phase velocity. Numerical experiments [8] have alsc
demonstrated that equilateral triangles are more accurate than right triangles.
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F1G. 4. Triangular element configurations for the FEM analyses.

Imposing the Galerkin condition with the basis function corresponding to node N,
in element 1, the spatially discretized versions of (1) become

1 1
720+‘1_2‘(21+22+23+z4+25+26)

2 () () o5
3\ 24x 6 Ax 6 Ax
2 03—06 l(vz-v1> l(v4~vs)]

= (2 (=) =0 12
+h[3<24y, 6\ 4 )T e\ T4 (12a)
(rve) [

S—:‘lﬁa

+h

!

;U (” +u7+u3+u4+u5+u6)]

2 <z —24) 1 (’zz~z3>+i<zﬁ—zs'):|
3\ 24x 6\ 4Ax / 6 Ax

(v + v, +v3+v4+v5+v6)] (12b)

+&

-/

N‘.—

0 1
(T’+T [—2— +———(v +vz+v3+v4+vs+u6)]
) b (52) 5%
3\ 24y 6 Ay 6 Ay

1
+f[ (u1+u2+u3+u4+u5+u6)]

+8

(12¢)
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The algebra required to derive these ordinary differential equations (ODEs) is

facilitated by the “triangular area coordinates” described by Pinder and Gray [14].
The analogous result for element 2 is

gl 1
_20+T2‘(Z1+22+Z3+Z4+25 +2¢) |

2
) e ()|
ZA‘C 6 Ax 6 Ax

+
=
|———|r--—1

1 (v, —vg 1 fv,—0
h —(————3 5”:0 i3a)
- ( 2Ay 2\ 24y 1o
1
+r 5 Yo (u Tty + Uy g+ Us + Ug)
) ) )
+g[3(2m (Ax e\ Tax
1
[—2— +——(v +r,+u;4 0, +L‘41—1‘6)} (13b)
1
—}—Z’ [ (u +L’+U+U+U—l—)6)]
1 — 1 z3—25“}
+g[ . 2Av * 2( 14y )
1 1 .
+/ U +T2—(u1+u2+u3+u4+u5+u6) =0Q. (132)

Assuming the plane wave solutions

"z(r Ax, s 4y, 1) 'z,

u(r Ax,s Ay, t) | = | u, Vexpli(rk, 4x + sk, 4y — wt}] {14}
v(rdx, s 4y, t) Uy,

dispersion relationships due solely to these spatial discretizations can be found. Botn

are calculated from the cubic polynomials which result when requiring nonzero
values for z,, u,, and v,. For element 1, the cubic is

G 2
w*A? + 2iw?A4? T+a)[—A P+ — gh( z +,G;”,>]

- G? G? ) .
-—_ X -5 :O (is\
((Ar) )’ o
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where
A =3+ ¢[cos ky Ax + cos k, Ay + cos(k, Ax + k, 4y)] (16a)
G,=3%sink, Ax —isink, Ay + } sin(k, 4x + k, 4y) (16b)
G,=4%sink, 4y — % sink, Ax + } sin(k, 4x + k, 4y). (16¢c)

Walters and Carey [24] obtain this result for the particular case f=1=0 and
Ax =A4y. With f=17=0 and either £, or k, equal to zero, the nontrivial dispersion
relationships arising from (15) and (16) are the same as those for the one-
dimensional analysis in [2].

For element 2, the cubic polynomial is unchanged but

A =14+ %cosk, Adx + 1 cos(3k, Ax) cos k, Ay (17a)
G, = %[sin k, 4x + sin(4k, 4x) cos k, 4y] (17b)
G, =sin k, Ay cos(3k, 4x). (17¢)

Again, with f=1t=0 and k, =0, the nontrivial dispersion relationships simplify to
the one-dimensional result. With equilateral triangles, this simplification also occurs
when k, = (3)"? k,.

Phase velocities, group velocities, and wave amplitude decay factors can be
calculated from the roots of (15). However, their accuracy does not always indicate
the accuracy of the fully discretized numerical solution. In some cases, a subsequent
time discretization may partially cancel the errors arising from the spatial
discretization, thereby making the fully discretized equations more accurate. It is
therefore advisable to continue the analysis by introducing a particular time stepping
method for solving the system of ODEs given by (12) or (13).

The one-dimensional analysis of [2] suggests that Crank—Nicolson (CN) is the
best time stepping method to use in combination with the GLFEM. It approximates
the simple ODE

17

-
= =1() (18)

with the two-step difference equation

nel _

At

¥ ¥

1 n+1 n
= (). (19)

Dispersion relationships are calculated for the fully discretized equations by
assuming the plane wave solutions
z(r dx, s Ay, n At) z,
u(r Ax, s Ay, n At) V= { u, | expli(rk, 4x + sk, 4y — nw At)]. 20)
v(r Adx, s Ay, n At) Uy
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In particular, the numerical eigenvalues defined by (8b) are calculated as
A= (1= diw, 4t)/(1 + 3icw, A¢) {2hH)

where w, is a root of (15). This is seen by comparing the dispersion relationships for
(18) and (19).

In order to compare the relative accuracy of elements 1 and 2 in Fig. 4, the total
area of the elements should be considered. Since both elements have the same storage
requirements for the nodal variables, equal area implies equal storage costs for a
model of prespecified spatial dimensions. Accuracy can then be compared on an
equal-cost basis. In particular, consider Ax=Ay in element 1, and equilateral
triangles with sides of length d in element 2. Equal area then requires

d= (%" 4. (22)

In order that the accuracy of these two FEMs might also be compared to the RS
results, the parameters of (9) should be redefined for triangular elements. Specifically

2A 1/2
f1=T<ghr) {23a}
gh 1/2 A
2A|- 1/2 .
fi=f (‘g) (23c)

where A_ is the area of each triangle in the respective element. With Ax =4y in
element 1, (23) and (9) become equal. Moreover, per unit area, RS has as many
variables as the FEMs.

With equilateral triangles, it is convenient to redefine G, in (17). Setting

G, = [2 sin k, Ay cos(3k, 4x)]/312 (24)

with Ax = d and 4y = (3)"/* d/2 permits the replacement of G,/4y with G,/d in (15).

Figure 5 shows dispersion surfaces for the same parameter values as in Fig. 2. It
also has the same scale and is viewed from the same perspective. Surfaces are shown
for both elements of Fig. 4 and both the spatially discretized and fully discretized
equations. Again, only positive k, Ax need be displayed since (135) is symmetric
through the origin for element 1, and both through the origin and about the &,d axis
for element 2.

Figure 5 has several notable points. The first is that there is little difference
between the spatially discretized and fully discretized surfaces. This implies that
virtually all the inaccuracy of the fully discretized equations is due to the spatial
discretization. Hence CN has scarcely affected the accuracy. This may not be true for
all time stepping schemes.
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Fi1G. 5. Dispersion surfaces (fw|dx/(n(gh)'?)) for the GLFEM with CN time stepping. Parameter
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Each of the dispersion surfaces in Fig. 5 is symmetric. Considering the symmetries
in the elements themselves, these are to be expected. The surface for element 1 is
symmetric about the planes k,=k, and k,=—k,. The element 2 surface is
symmetric about k, = (tan ¢) k,, where ¢ = 30°, 60°, 90°, 120°, or 150°.

The most striking feature of both surfaces is their poor accuracy for higher values
of wavenumber sampling. Accuracy is reasonable for small wavenumbers (i.e.,
k Ax/m < 0.1) but it deteriorates as k Ax increases. This is consistent with the one-
dimensional analysis [2]. Particularly disturbing are the frequency valleys. For the
case 7 =0, the nontrivial roots of (15) are

Assuming Ax = Ay, minimal values of |w| occur when
Gl=G2=0. (26)

In particular, for element 1 they occur at the following seven values of (k; 4x/m,
k,Ax/7): (0,0), (1, 1), (—1, 1), (0, 1), (1,0), (—1,0), (4, $). The latter corresponds to
a diagonal wave of length (4.5)'/* Ax, while the fourth, fifth, and sixth minimal values
are associated with one-dimensional 2 Ax waves. The second and third minima
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correspond to diagonal waves of length (2)"? Ax. (In a two-dimensional grid, plane
waves shorter than 2 Ax are possible.) All these waves have the inertial frequency f.
In the particular case when f=0, w=|C|=0 at these seven points. Hence the
progressive and retrogressive surfaces touch. These seven minimal values for || are
perturbed slightly by the nonzero values of r in Fig. 5.

For element 2, the surface minima occur at the (k,d/n, k,d/n) values (0,0),
(1, (3)7'?), and (—1, (3)~"?). The latter two correspond to waves of length (3)"/2 d.
A similar minimum also exists at (0, 2(3) ~"/?) but is not shown.

Comparing accuracy on the basis of equal area now means that k, Ax + k, d. That
is, even though waves may have the same lengths on the element 1 and element 2
meshes, their sampling rates per wavelength will differ. The shortest one-dimensional
wave supported by element 1 is 2 Ax while for element 2 it is the slightly longer value
of 2d. In order to permit accuracy comparisons on the basis of wavelength, the k,d
and k,d axes should be scaled. This is done in Fig. 6.

Figure 6 shows M,, M., and G/(gh)"/* values associated with the fully discretized
dispersion surfaces of Fig. 5. Both element configurations produce wave amplitudes
which are too large and phase velocities which are too small. However, for both M,
and M., when k, Ax/n < 0.5 the element 2 contour levels are further away from
(k;, k,) = (0, 0) than those of element 1. This implies that element 2 is more accurate
for longer waves.

Comparing Fig. 6 with Fig. 3, one cannot conclude that either numerical scheme is
consistently more accurate. Generally the RS scheme is more accurate, however,
there are some regions near (k, 4x, k, Ax) = (0, 0) where the GLFEM schemes are
better for both wave amplitude and phase velocity.

The accuracy of the GLFEM numerical group velocity deteriorates significantly as
the wavenumber increases. Errors exist in both magnitude and direction. In fact, for
some short waves, G is not only much too large but also in virtually the opposite
direction that it should be. Group and phase velocities which are not co-directional
signify energy propagating in a different direction than the wave crests. Although this
should not occur for shallow water waves, it is clearly seen to do so for both the RS
and GLFEM schemes.

4. THACKER’S IRREGULAR GRID FINITE DIFFERENCE TECHNIQUE

Thacker [20-22] has recently presented a technique for defining FDMs over
irregular grids composed of triangular elements. The underlying concept is that in the
vicinity of a triangle, the partial derivatives of a function can be approximated by the
slopes of a plane determined by the values of the function at the vertices. At a vertex,
the partial derivatives are then approximated by a weighted average of the approx-
imations in each of the triangles which contain that vertex. For equal area triangles
such as those of Fig. 4, the resultant spatial derivative approximations are equivalent
to those for the GLFEM. In fact, for elements 1 and 2, respectively, the spatially
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discretized equations are simply found by replacing all terms of the form 1/2z,+
Sz +z,+z;+ 24+ 25+ 2z6) in (12) and (13) with z,. When combined with an
explicit time stepping scheme, Wang [25] points out that the fully discretized
technique is a “lumped mass matrix™ version of the GLFEM.

Thacker employs an explicit leapfrog time stepping similar to the RS scheme of
Section 2. For solving (1), his fully discretized equations may be generalized as

n+l_ ,n AN\ n+1/2 é\, nd1/2
Tatenlg) G, o @
X/ e
, ; o~
z{th—kl,z_”]r}—l,z (32’)" . i
P — — ) —f0vrrt 1 -Gyt~
i +8 ax), floe; ™+ (1 =i~
+7[0ult 2+ (1= Q) ul~ ] =0 (27b)
L,r.£+l,v'2_vry—l,/2 oz\" s .
St g (Z) st (-8
' J
+r[fe P (1= ) =0 (27¢)

where

3 B
() = (5

denote the spatial derivative approximations. For elements 1 and 2, these approx-
imations are identical to those in (12) and (13). The particular scheme discussed by
Thacker has 7=0 and = 1.

Assuming a uniform grid of equilateral triangles and =0, Thacker [22] calculates
dispersion relationships for his scheme. These results can be extended to include the
element ! grid with dx =4y, and to allow for nonzero friction and Corioiis
parameters. For both grids, the spatially discretized relationships are simply found by
setting A = 1 in (15).

Assuming plane wave solutions, the characteristic equation arising from (27) is

A= DA+ 04— 1+ (1 =)t At]* + (fA)HA + (L — 6))°}

Gi

+ gh(AN2 A[A(L + 6t At) — 1 + (1 — @) 7 At] ( +W) =0 (28)

()’

with A defined as in (8b) and G,, G, as in (16), or (17) and (24). With 7= 0, the
respective dispersion relationships for elements 1 and 2 are

cos w At = [1 —(f41)? 61 -B)~%gh ( j;

)2 Gx_‘,]/(l (@7 A7) (299)
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and

cos w At = [1 — (f41)* 6(1 — ) ——;—gh (%) 2 ny]/(l + (@f48)*)  (29b)

where
G, =Gi+G2. (29¢)
With f=0, (29b) simplifies to Thacker’s result.

For equilateral triangles, Thacker obtains the following necessary stability
conditions for his scheme and the GLFEM with similar time stepping:

fi=1(gh)"? 4t/d < 1.70437 (30a)

£4<0.90288. (30b)

These conditions assume /=0 and # = 1. For element 1 with Ax = Ay, the analogous
conditions are

fo=(gh)""* At/dx < 1.4142 (31a)

£, < 0.79830. (31b)

On the basis of equal area, element 2 has less restrictive stability constraints than
element 1. Furthermore, for both grids Thacker’s scheme is less restrictive than its
GLFEM counterpart. This means that Thacker’s scheme can use a larger time step.
Increased stability with lumping is also noted by Strang and Fix [19].

Thacker claims that his scheme is most accurate with the maximum possible time
step. This can be verified with an asymptotic analysis. Assume 7 =0, /' is O(1), and
/f; and kd are small. Comparing terms in the asymptotic expansion of (29b) and the
corresponding analytic expansion of cos(w At) shows that

fi=03)" (32)

and

D>
|
=

produce the best match. Accuracy is also seen to increase as f} approaches (3)'?

from below. Notice that the optimal value of /7 is slightly larger than the stability
limit given in (30a).
For right triangles with Ax = Ay, a similar analysis is less conclusive. Accuracy of
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the numerical method is now dependent on wave direction as well as f;. In particular,
the most accurate value of f, for wave propagation is

12
xy
=2 (1+—"— )
f ( x> +y?

.
L
T

Nt

where x = k, Ax and y = k, Ax. The minimal optimal value is (2)"/* when x = —. As
seen from (31a) this is also the maximum stable value. § = 1 still provides the most
accurate representation of the Coriolis terms.

Figure 7 shows the dispersion surfaces for the spatially and fully discretized
versions of Thacker’s scheme. It has the same parameter values, scale, and
perspective as Fig. 2 and Fig. 5. The spatially discretized surfaces are simply lumped
versions of those in Fig. 5. They have the same characteristic shape but, as seen from
the dotted line contour levels, have smaller values. Again, the time stepping method
has little effect on the fully discretized surface values. The symmetries and location of
the surface minima are the same for Fig. 7 as for Fig. 5. This implies that problems
with short waves for the GLFEM can also be expected with Thacker’s scheme.

Figure & displays the two accuracy measure functions and group velocity vectors
corresponding to the surfaces of Fig. 7. As with the GLFEM, the element 2 mesh is
generally more accurate than the element 1. Figure 9 is similar but has the near
optimal parameter values 6 =3, and f, = 1.40, f, = 1.826 (f} = 1.70) for the right
triangle and equilateral triangle cases. respectively. As theory predicts, Fig. 9 does

ELEMENT 1: ELEMENT 2:
RIGHT TRIRNGLES. DX=DY EQUILATERAL TRIANGLES

A
R
-....h....‘é o

1 Ty, Sy
AT T AT A G5
T Q'ﬁ.%g,.:.w .

SPATIALLY DISCRETIZED
SBLUTION

DISCRETIZED

12

Fic. 7. Dispersion surfaces (|w|d4x/(n(gh)'*)) for Thacker’s method. Parameter values are
S1=0.05, £;=0.7071, f, =0.10, # = 1. Dotted line contours are in increments of 0.10,
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display more accurate |C| and G for small wavenumbers. The amplitude ratios are
also more accurate, though they are too large in Fig. 9 and too small in Fig. 8. Notice
that for small increasing wavenumbers, Fig. 9 shows an improvement in amplitude
accuracy.

A comparison of Fig. 8 and Fig. 6 demonstrates that mass lumping can cause an
accuracy loss. However, to some extent, the different time stepping methods for the
two techniques has influenced the accuracy measure values. Replacing the CN time
stepping used with the GLFEM of Fig. 6 with Thacker’s time stepping actually
improves, for the same parameter values, the element 2 accuracy. However, Thacker’s
scheme remains less accurate for both elements.

A comparison of Fig. 9 with Fig. 6 is also revealing. It illustrates that an optimal
Thacker scheme can be more accurate than the unlumped FEM to which it is related.
Considering the much smaller costs of running Thacker’s scheme, this is a significant
result. However, the most accurate Thacker’s scheme is not more accurate than the
most accurate GLFEM, since the latter improves as f, decreases. Nevertheless,
Thacker’s scheme can be made as accurate as the GLFEM by increasing its spatial
resolution. The associated cost increase is more than offset by the explicit time
stepping, so that his scheme remains cheaper.

5. THE “WAVE EQUATION” MODEL FOR FINITE
ELEMENT TiDAL COMPUTATIONS

Recently Gray and Lynch [4, 11] introduced a promising FEM for solving the
shallow water equations. Rather than working with the governing equations in
conservation form, their “wave equation” method (WEM) involves transforming the
continuity equation to a second-order partial differential equation (PDE). The revised
system of equations is then solved with a Galerkin FEM, piecewise linear basis
functions, and centred time stepping. Dispersion analyses of the one-dimensional
WEM and its lumped counterpart, the LWEM, are given in [3]. This section extends
those results to the two-dimensional triangular elements of Fig. 4.

The linearized, two-dimensional, constant depth version of the continuity equation
solved by Lynch and Gray [11] is

8%z oz (322 822) (8v 6u>
G P (TR L) L () o 34
M ety T e (34)

It is solved in combination with the momentum equations (1b) and (Ic). The charac-
teristic equation for this system of PDEs is simply the product of (4) and (—iw + 7).
Consequently, replacing (la) with (34) produces an additional dispersion relationship
whose associated solution is a stationary wave that decays in time when 7 > 0.
Since Lynch and Gray employ piecewise linear approximating functions, the
Laplacian term in (34) necessitates a weak form of the Galerkin condition. Imposing
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this condition with the basis function corresponding to node N, in element i, the
spatially discretized version of (34) becomes

(£ .. 2)[] 1 |
YaRan ooty @t atant itz

2 vl~v4> l(vz—vz‘ l(vﬁ——vs)}
. — —_f —_— —
'hf[3(24x Ml e Rl i

2 u3-u6) 1 (uz——ul'> 1(:44—u5>]
hf[3(,24y,+6 4 e\ T
z,—2z,+ 2z 2, —2Zy+ 2
_ h 1 0 4 3 0 6}:0
& [ . T @)

The analogous result for element 2 is

- o? 0 1 1
(Trz—‘f'fg) 720+”§(21+22+23+24+25+26)

2 fvy—v 1 fv,—v 1 fvg—vy
P Bl 4>+__(2 3>|_< 6 5)]
+J[3<2Ax, 6 \ dx 4—6,Ax

I fu,—u 1 fu,—us
) )
f[z a2\

z,—2z,+ 2, 1 [l

T(Zz_zl_zﬂ+ze)

R

(98]
o
St

+_1“(23*20‘z4+25)+L[’1‘(22+Z3+26+—75)—2zﬁ]]2’ =0. (
4 2 |2 |
The associated spatially discretized momentum equations are given by (12b), (12c)
and (13b), (13c), respectively.

Assuming plane wave solutions of the form (14), dispersion relationships can be
found for these spatial discretizations. In both cases they are derived from the roots
of the polynomial

w* + 3itw® — w3t + £ + 2ghB/A) — it (t* + f* + 4ghB/4)

+ gh [2(rz+f2)B/A —f? ((—5;}5—')2—+@%—2—)/A2}=0. (37

For element 1, 4, G, and G, are defined by (16) while

B— 1 —cos kzle 4 I —cos Iszy
(4x) (dr)”

(382)
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For element 2, 4, G,, and G, are defined by (17) while

B 1 —cos k21 Ax N 1(3 + cos k, dx) — cosz(%kl Ax) cos k, Ay . (38b)
(dx) @)

Assuming plane wave solutions of the form (20), dispersion relationships can also
be calculated for the fully discretized “wave equations.” As in [11], we assume that
the time stepping method is parameterized in terms of 8, the weighting parameter for
the gravity terms, and ¢, the weighting parameter for the friction terms in the
momentum equations. With G,, G,, 4, and B defined appropriately for elements 1
and 2, the characteristic equation is

| 2 2
72432 07+ 2007 B4 | 3+ 4 7, + 407G +52)

G? G? )
— 4ghA Y ye(dr)’ ((A;) -+ (Ay’)z ) /A‘=O (39a)

where A is defined in (8b) and

h=0@A-1)? (39b)
y,=Ar—1 (39¢)
Yo=130A*+ 1)+ (1 —-0)1 (39d)
y,=3a(A* + 1)+ (1 —a)l (39¢)

Two roots of (39) are associated with gravity waves. They are called principal
roots. The remaining four roots are either artifacts of the numerical solution, called
spurious roots, or approximations to the two stationary modes. Spurious roots are
important only insofar as they can contaminate the principal numerical solution. In
particular when their magnitude is larger than that of the principal roots, they decay
more slowly (or grow more rapidly) and eventually dominate the solution. Provided
they do not contaminate the gravity wave solutions, the stationary mode approx-
imations are also unimportant. However, if either f or A were nonconstant, one
stationary mode would become a planetary wave whose numerical approximation
would be of interest.

A linear stability analysis of the WEM is difficult when f is nonzero. However,
necessary stability conditions with realistic nonzero values of f should only be pertur-
bations of the conditions derived by assuming f=0. Therefore, the restrictions
obtained by assuming f= 0 should be close to those required for nonzero Coriolis.
Numerical computations confirm this.

When (=0, (39) reduces to

0,0;=0 (40a)
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where
0, =7, + 1t dty, + 2gh(41)? yoB/A (400}
and
Q,=v,+2tdry,. (40c)

This result is similar to the one-dimensional characteristic equation [3] Q,Q,.
Specifically, Q, is identical, and Q, has the same form when E? is defined as

-————— —

This similarity implies that the one-dimensional stability analysis can be followed
here.
The roots of @, are parasitic. In one dimension, they are stable when [11]

a>i. 42)

In two dimensions, each of the parasitic roots has multiplicity 2, thereby requiring the
more restrictive condition a > 3. Numerical computations suggest that ¢ =1 is a
good choice since it generally ensures that the spurious root magnitudes are less than
those of the principal roots. This is discussed further in [3].

The propagating principal roots of @, are stable when

2 1 .,

for all E* and t At. The nonpropagating principal roots are stable when
1 4 .

for all E?. Assuming positive 74t, the second condition is more restrictive. For
element 1 with 4x = Ay, it reduces to

1 1
>— - '7) k4~
23 (1 6464172, (442)

while for the equilateral triangles of element 2 it becomes

1 i

9>~(1—*——~). (44b)

) 5.5783(f 1)’ @)

With k, =0, E? is identical to its one-dimensional counterpart. Hence all the roots

and the stability constraints reduce to those in [3]. Setting &k, =0 is equivalent to

projecting both elements of Fig. 4 onto the y axis. The six nodes coalesce to three
nodes which are uniformly separated by 4y.
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In [3] it was possible to choose a value of 8 which produces the most accurate
one-dimensional dispersion relationship for the WEM. This is also possible in two
dimensions. Assuming /=t =0, the principal numerical eigenvalues are the roots of

(A — 1)% + 2gh(4) [36(A2 + 1) + (1 — 6)]B/A = 0. (45)

With element 1 and Ax = Ay, substitution for A leads to the dispersion relationship
coswdr=[1—(1—8)D]/(1+6D) (46a)
where
D = f3(2 —cos x —cos p)/[3 + %(cos x + cos y + cos(x + ))] (46b)

and x =k, Ax, y =k, Ax. Comparing the asymptotic expansion of (46a) for small x
and y with the analytic result does not yield one value of 8 which is best for all wave
directions. In particular, when y = sx,

1 1 1 145!
_ [ 2s +s 1)

TSyt yIlies T e

provides the best match. With § =0 or s = o0, (47) reduces to the one-dimensional
result [3]

Hz—é—(l—kf%). (48)

This value produces the most accurate representation of wave propagation along
either axis of element 1 in Fig. 4. However, for waves propagating along the diagonal
(ie, s=1),

1 5
6= 3 + B (49)
is best. With £, = (2)~'/2, these two optimal values are appreciably different, namely,
1 and 1.

Accuracy which varies with wave direction is clearly undesirable. It implies that
grid orientation affects model accuracy and that by simply changing direction a wave
may be less accurately represented. Fortunately, with the preceding simplifying
assumptions, this directional dependence can be avoided with equilateral traingles. In
fact, it is even avoided for small nonzero values of 7 At.

With x=k,d, y=k,d and rd = Ay, the dispersion relationship for element 2 is
again given by (46a), but

_ (f5)2[1 —cos x + (1/r*)(3 + 4 cos x — cos(3x) cos(ry))]

D
[ + § cos x + § cos(3x) cos(ry)]

(30)
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Matching asymptotic expansions now shows that

1 1

=5t gy

~ e

is the most accurate value for gravity wave propagation in equilateral triangles.
Unlike (47), it is not directionally dependent. Furthermore, with the substitution 4y =
((3)"%/2)d, (51) is identical to the one-dimensional result (48).

Figure 10 shows the principal dispersion surfaces for the spatially and fuily
discretized versions of the WEM. It has the same parameter values, scale, and
perspective as Figs. 2, 5, and 7. The time stepping parameters for the fully discretized
equations are #=0.5 for element 1 and #=0.45534 for element 2. The former is
optimal for one-dimensional wave propagation along the x or y axis, while the later is
optimal for all directions. Both values satisfy the principal eigenvalue stability
conditions (44). For both elements, choosing ¢ = 1 ensures stability of the parasitic
eigenvalues.

Unlike the GLFEM and Thacker’s scheme, these surfaces do not have local
minima at large wavenumbers. This implies that short waves do not have the small

ELEMENT 1: ELEMENT 2:
RIGHT TRIANGLES. DX=0Y EQUILATERAL TRIANGLES
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FiG. 10. Dispersion surfaces (Jw|dx/(n(gh)''*)) for the WEM. Parameter values are f, = C.05.
J2=0.9071, f;=0.10. a = 1. §=0.5 for element 1 and § = 0.45534 for element 2. Dotted line contours
are in increments of 0.10.
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inertial phase velocities (arising from w = f') discussed in Sections 3 and 4. Provided
the parasitic waves do not contaminate the numerical solution, the WEM (with these
fi. fa» /5 values) should therefore not have the same short wave problems as the
GLFEM and Thacker’s method.

The M, and M. contours and group velocity vectors corresponding to the
dispersion surface plots of Fig. 10 are shown in Fig. 11. High phase velocity accuracy
along the axes of element 1 is evident but seems to occur at the expense of accuracy
in other directions. For virtually all wavenumbers, element 2 more accurately approx-
imates wave propagation than element 1. And for small wavenumbers, its wave
amplitude approximation is also slightly more accurate.

Lynch and Gray [11] also discuss an appropriate quadrature rule which has the
effect of lumping their equations. As with Thacker’s scheme, this lumping causes all
terms of the form 4z, + 5(z, + z, +z;+ 2z, + 25+ z¢) in the spatially discretized
equations to be replaced by z,. The associated dispersion equation (37) then requires
the re-definition 4 = 1. The fully discretized lumped equations, and their associated
characteristic equation (39), require these same substitutions. When 6=0, the
LWEM is explicit.

Necessary stability restrictions for the LWEM can also be found when /= 0. The
parasitic eigenvalues are identical to those for the WEM and are thus governed by the
same stability conditions. Similarly, with 4 =1 substituted in (41), the principal
eigenvalues are stable when (43b) is satisfied. These conditions reduce to

1/ L
0>—( ———,) 52
2 \17 97 (522)
for Ax = 4y and element 1, and
1 |
02\l ——o5a 77
2 (1 1.47218(f§)“) (520)

for the equilateral triangles of element 2.

The LWEM also has values of € that are most accurate for wave propagation.
Assume /=7 = 0. With element 1 and 4x = 4y, the LWEM dispersion relationship is
again given by (46a), but

D = f3(2 — cos x — cos y). (53)

Matching the asymptotic dispersion relationship for small x and y with the analytic
and setting y = sx now yields

ez—é— [1 —f———g(llis;z)z]. (54)

As with the WEM, s =0 or s = oo produces the one-dimensional result [3]

9=%<1—J71§—). (55)
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With x=k,d, y=k,d, and rd=A4dy, the LWEM dispersion relationship for

element 2 i alen siven hv (4Aa) hnt

o —\j3) I_L—uvo.m TF\TTT\.uaA '\.Uo\ 2',\/ vUo\l}/}/J. vy

Matching asymptotic expansions for equilateral triangles yields

1 1

Again, this value is not directionally dependent. And with the substitution y =
((3)"?/2)d, it is identical to the one-dimensional result (55).

In one dimension, § = 0 produces the most accurate approximation of gravity wave
amplitudes for both the WEM and LWEM [3]. The same is true in two dimensions
when /=0 and 7 > 0. In fact, it is true for both element 1 when 4x =4y and the
equilateral triangles of element 2. Furthermore, when f = 7 =0, all stable values of &
produce exact amplitudes.

Figure 12 illustrates the stability regions and the most accurate § values for gravity
wave propagation over a configuration of equilateral triangles. Values of f} and ¢
should be chosen so that the resultant numerical method is stable. The particular
choice may be a compromise between accuracy and time step size. Large values of Az
(or f1) result in less computation cost but may be less accurate. Computationally, the
explicit LWEM (€ = 0) should be most economical. Unfortunately, the associated f';
value which most accurately represents phase and group velocity (f} = 0.866025) is
outside the stability region. '} = 0.824175 is the most accurate and stable choice.

Figure 13 shows the principal dispersion surfaces for the spatially and fully
discretized versions of the LWEM. It has the same parameter values, scale, and
perspective as Figs. 2, 5, 7, and 10. The time stepping parameters for the fully
discretized equations are §=0 for element 1 and =—0.122 for element 2. The

WEM LWEM
o

1 .00 0-00 1.00 <.00 .00 1.00
THETA THETA

FiG. 12. Stability and accuracy for the WEM and LWEM over equilateral triangles. Shaded regions
denote stability. Solid lines designate the most accurate values of @ and /' for wave propagation.
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ELEMENT 1: ELERENT 2:
RIGHT TRIANGLES. Dx=DY EQUILATERAL TRIANGLES

SPATIALLY DISCRETIZED
SOLUTION

FULLY DISCRETIZED
SALUTIEN

Fi1G. 13. Dispersion surfaces (Jw|A4x/(n(gh)"'?)) for the LWEM. Parameter valuss are f, = 0.05,
S2=0.7071. f;=0.10, 2 = 1. =0 for element 1 and § = —0.122 for element 2. Dotted line contours arz
in increments of 0.10.

former is optimal for wave propagation along the directions y = +x, and as seen from
{(52a), lies just within the stability limit. (Choosing 6 = —%, the optimal value for
wave propagation along the x or y axis would be unstable.) The 8 value for elemeni 2
is optimal for all wave directions and satisfies the stability constraint (52b).

Comparing the spatially discretized surfaces in Figs. 10 and 12, it is evident that
lumping has reduced the w values. However, the chosen time stepping methods are
seen to lower the WEM values and raise the LWEM values so that the fully
discretized surfaces are more similar.

Figure 14 shows the M, and M. contours and the group velocity vectors
associated with the dispersion surfaces of Fig. 13. Accurate wave propagation along
the lines x =4y for element 1 is evident, but appears tc be at the expense of
accuracy in other directions. For small wavenumbers, element 2 displays the same
accuracy in all directions and is generally more accurate than element 1. Wave
amplitude accuracy also seems to be independent of direction for element 2. However,
it is slightly less accurate than the amplitudes associated with element 1.

The M values for element 2 are virtually identical in Fig. 11 and Fig. 14. In fact,
with f} = f, = 0, they would be equal. Denoting the optimal parameter values of (51}

581;56,2-10
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and (57) by 8%, the dispersion relationships for both the WEM and LWEM when
expanded to terms of order 6 can be expressed as

cosw At~ 1 —%(f;)z(xz +y2)+—i—(f;)4(x2 +y1)? [%—%—9*6*]

—%(f;ﬂxz +77) [(fé)“ (0—9* +%) 2 “61?]

~—2—;g(f£)2 H—;—x“ Jr%y6 +x?yt +%x‘y3]- (58)
This implies that around their respective §* values, both the WEM and LWEM have
the same accuracy deterioration for cos w Az. As was found in one dimension, the
best time stepping method for the lumped scheme produces the same propagation
accuracy (to order 8 in (k,d,k,d)) as the best time stepping method for the
unlumped method. Notice that the associated M, values indicate amplitudes which
are too small for the LWEM and too large for the WEM.

6. COMPARISONS OF ACCURACY AND ECONOMY

Most finite element methods are more expensive than explicit finite difference
methods. This is the case with the GLFEM and the RS scheme. This disadvantage is
primarily due to the nondiagonal matrix equation which must be solved at each time
step. In Sections 4 and 5, it was seen that with explicit time stepping, both Thacker’s
scheme and the LWEM produce diagonal matrices. Hence they should be much
cheaper than the GLFEM. In this section, cost and accuracy comparisons are given
for the RS scheme over a square grid, and for Thacker’s method and the LWEM over
a configuration of equilateral triangles.

Assume identical configurations of equilateral triangles for Thacker’s scheme and
the LWEM. When f =1 =0, asymptotic expansions of the nondimensional phase
velocity for small (k,d, k,d) are

ICl/(gh)'? ~ 1+ [(kd)* + (k,d)*] [—;4—(1”5)2 ——é—] (59a)
U =1+ () + ()] | 57 -5 (59)

for Thacker’s scheme and the explicit LWEM, respectively. The associated respective
group velocities are

/1 1Y :

G/(gh)' = | (8 + kD™ 4 306+ kY™ (55 U~ |x om)

1
G/(ghy = (2 + k)~ + 30208 + KD (55 U7 — 53] | & (600)
! 24 32
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Notice that for high wave resolution, both phase velocities are isotropic and both
group velocities have no directional error.

Assuming the optimal stable values for f}, specifically £ = 1.70437 for Thacker
and f; = 0.824175 for the LWEM, (59) becomes

IC|/(gh)? ~ 1 —0.00396345[(k,d)? + (k,d)?] (61a)
ICI/(gh)"2 ~ 1 — 0.00294732[(k, d)* + (k,d)?]. (61b)

Since the corresponding analytic values are 1.0, the second term in each case is the
phase velocity error. Both errors in the group velocity magnitude are larger by a
factor of three.

Equation (61) indicates that for identical configurations of equilateral triangles the
best explicit LWEM is more accurate than the best Thacker scheme. However,
Thacker’s scheme is cheaper since it uses a much larger time step. By reducing both d
and At with Thacker’s scheme, it is possible to attain the LWEM accuracy and retain
the cost advantage.

If the same accuracy is assumed for both methods, Thacker’s 4¢ becomes larger by
the factor 1.78329. However, his smaller d requires 1.34476 more nodes per unit
area, and thus more calculations over one time step. The net result is that Thacker’s

&

LWEM, yet require only 0.75409 the number of calculations per unit area and unit of
time.

Despite this cost advantage, Thacker’s method may not be preferable to the
LWEM. Boundary conditions often introduce short waves into a numerical model.
Their accumulation can contaminate the desired longer wave solutions. Problems of
this type have been reported with the GLFEM. Since both Thacker’s scheme and the
GLFEM do not represent short waves accurately, similar problems may also arise
with Thacker’s scheme. They should not exist with the LWEM.

With Ax = Ay and f = =0, the RS dispersions relationship is [7]

sin’(3w 4f) = f3[sin’(3k, Ax) + sin*(3k, 4x))]. (62)

For small values of (k,d4x, k,dx), the asymptotic expansion for the associated
nondimensional phase velocity magnitude is

e = 1+ | (73— DN A%+ G 400 +

2(k, Ax)*(k, Ax)? ]
(k1 dx)? + (ko 4x)* 1
(63)

Since it is anisotropic comparisons with (59) are not straightforward.

Let us compare the RS scheme with the LWEM. One grid square of the RS has
three unique variables and area Ax% One triangular element of the LWEM has area
((3)*/4) d* and has the equivalent of 1.50 variables, since each node shares its
variables with five other triangles. For a comparison based on equal density of the
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variables, set Ax =0.9306054. Assume the optimal f, value (from (63)) when
k, =k,, namely, f, = (2) "% Then if 4¢' is the optimal time step for the LWEM,
At =0.79842A4t' is the optimal time step for the RS. The LWEM is therefore more
economical. Its relative accuracy depends on the wave direction. When k; = k,, the
RS more accurately approximates wave speed. However, when k, =0 or &k, =0, the
LWEM is more accurate.

7. SUMMARY AND CONCLUSIONS

The preceding analysis has demonstrated that finite element methods can be cost
competitive and as accurate as explicit finite difference schemes. In particular,
Thacker’s scheme and the explicit LWEM were found to be cheaper and generally
more accurate than the RS finite difference method.

Of the two configurations of triangular elements, the analysis indicates thar
equilaterial triangles are the better choice. Their phase and group velocities are
independent of direction and more accurate for long waves. Numerical tests [8]
substantiate this result. In fact, because equilateral triangles seem to produce
isotropic waves when the wave resolution is high, they may be the optimal triangular
discretization.

Optimal accuracy for Thacker’s scheme, the WEM, and the LWEM depends on
the parameter /';. As discussed in [2], it is both possible and reasonable to keep this
parameter approximately constant throughout a model. Consequently, an idea:
triangular discretization should employ equilateral triangles whose side length is
proportional to (k)Y

Specific results from the preceding analysis are now summarized by section. The
RS scheme studied in Section2 was found to be quite accurate for small
wavenumbers, and for waves travelling at 45° to the grid axes. However, its phase
velocity is anisotropic. Asymmetric treatment of the Coriolis terms was also seen te
affect the accuracy.

The GLFEM studied in Section 3 displayed accuracy comparable to the RS for
small wavenumbers but became very inaccurate at larger wavenumbers. The
numerical dispersion surface was seen to have peaks and valleys, implying waves
with zero group velocity. Some short waves were calculated to have small inertial
speeds while others had group velocities whose directions were incorrect by almost
180°. The configuration of equilateral triangles was found to be more accurate at
small wavenumbers than the grid of right triangles.

Thacker’s scheme, studied in Section 4, was found to have the same short wave
problems as the GLFEM. Stability conditions were calculated for both elements, and
the f} value which most accurately approximates wave propagation was aiss
calculated. For the equilateral grid, phase velocities were isotropic.

Section 5 included a linear stability analysis when /' = 0 for both the WEM and the
LWEM. An asymptotic analysis for small wavenumbers was also used to determine
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the most accurate time stepping method for each scheme. Accuracy was again seen to
be directionally dependent with element 1 of Fig.4, but independent for the
equilateral triangles of element 2. It was also shown that with an appropriate time
stepping method, wave propagation accuracy can be preserved in going from the
WEM to the LWEM.

Section 6 found that for small wavenumbers, the most accurate version of
Thacker’s scheme can more cheaply attain the same accuracy as the most accurate
explicit LWEM. However, Thacker’s scheme is less accurate, and may have
difficulties, with short waves. The RS scheme was seen to be more expensive per unit
of real time than the LWEM. Moreover its accuracy is directionally dependent. For
some directions it more accurately models wave propagation than the LWEM, while
for other directions it is less accurate.
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